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Expected outcomes

● Understand the concept of conditional logistic 
regression

● Perform conditional logistic regression for 1-1 and 
1-M matching

● Perform model assessment
● Present and interpret results



Dr. Wan Nor Arifin Multinomial logistic regression 3

Outlines

● Introduction
● Conditional logistic regression model
● Model building:

– Variable selection

– Variable assessment

– Interaction term assessment

– Model fit assessment
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Introduction
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Introduction

● A regression method to model relationship between:

– Outcome: binary categorical variable

– Independent variables: numerical, categorical variables, 
stratum variable

● Matching of case-control by stratum using variables believed to 
be associated to the outcome, e.g. age and gender – allows 
controlling for the effect of these variables

● Matched case-control study – 1:1 to 1:M design
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Introduction

● Model the relationship

binary outcome = numerical predictors +
 categorical predictors +

stratum variable
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Introduction

● Analytical challenge in analyzing matched case-control:

– 1:1 matching – two subjects per stratum

– n case-control pairs (i.e. sample size = 2n), p 
covariates

– Need to estimate n + p coefficients in this fully 
stratified analysis!

– Biased, large number of parameters to be estimated
● Requires analysis by conditional likelihood estimation – to 

get rid of stratum specific parameters 
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Multinomial Logistic Regression 
Model
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Stratum-specific Logit Function

● For a stratum-specific binary logistic regression with k 
stratum, the logit function is given as:

gk(x)=αk+β 'x

where α
k
 indicates stratum specific intercepts

● For a conditional logistic regression model, there are too 
many intercepts as there are many strata (case-control pairs)

● So the conditional model is developed so as to remove these 
intercepts
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Conditional Likelihood

● Conditional likelihood for the kth stratum is the probability 
of the observed data relative to the probability of the data 
for all possible assignments of n1k cases and n0k controls to 
nk = n1k + n0k subjects
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Conditional Likelihood

● The number of possible assignments of case status to n1k 
subjects among nk subjects is given by the binomial 
coefficient:

ck=
nk C n

1k
=(

n k

n 1k)=
n k !

n 1k !(nk−n 1k)!



Dr. Wan Nor Arifin Multinomial logistic regression 12

Conditional Likelihood

● Then, the full conditional likelihood is given as:
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Conditional Likelihood

● The conditional likelihood can also be simplified as:

● This likelihood form is similar to the one used for 
proportional hazards model for survival analysis.(Faraway, 2016)
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Conditional Likelihood

● For 1:1 matching, this is simplified as: Given values of β, x
1k

 
and x

0k
, it is the 

probability that the 
subject identified as the 
case is in fact the case, 
within k stratum

● For 1:3 matching, this is given as:

Given values of β, it is 
the probability that the 
subject with data x

1k
 is 

the case relative to 
three controls with data 
x

2k
 to x

4k
, within k 

stratum
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Conditional vs Unconditional 
Likelihood

Conditional:
● when sample size 

smaller than 
number of 
parameters

● only estimates β 
coefficients

Unconditional:
● when sample size 

larger than number 
of parameters

● estimates both α 
intercepts and β 
coefficients
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Odds Ratios

● The odds ratio for a covariate xi are calculated in the same 
way as the binary logistic regression as follows:

OR (xi)=e
β1 i
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Testing Significance

● Wald test, W

● Likelihood ratio test, G
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Testing Significance

● Wald test, W:

W =
β̂

ŜE (β̂)

then, two-tailed P-value is P(|z| > W), as W follows standard 
normal distribution.

● More suitable for testing a single variable.
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Testing Significance

● Likelihood ratio test, G:

G=−2(L0−L1)OR

G=D0−D1

then, P-value is P[χ2(df) > G], as G follows standard normal 
distribution, and df = difference in number of parameters between 
the models.

● Suitable for testing single/many variables.

Log Likelihood of model withOUT x 
variable(s) –

Log Likelihood of model with x variable(s)

D = Deviance =
-2 Log Likelihood of model
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Model Building
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Model-building Steps

1. Variable selection

– Univariable

– Multivariable

→ Preliminary main effects model

2. Variable assessment

– Linearity in logit – numerical variable

– Other numerical issues

• Concordant pairs – check for dichotomous covariates

• Multicollinearity – check SE relative to coefficient

→ Main effects model
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Model-building Steps

3. Interaction term assessment

– Univariable

– Multivariable

→ Preliminary final model

4. Model fit assessment

– Goodness-of-fit – Difficult and not available in packages / software

– Regression diagnostics – Not available in packages / software

→ Final model
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