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Introduction
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Group things that have common concept.
Simplify.

Factoring = Grouping.

Factor = Construct = Concept.
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Intuitive factoring

Orange, motorcycle, bus,
durian, banana, car

Anything in common?
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Intuitive factoring

Group them

| Orange, durian, banana |
| Motorcycle, bus, car |

into two groups
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Intuitive factoring

Name the group

Fruits  Motor vehicle

Orange  Motorcycle
Durian Bus
Banana Car

factor out the common concept
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o find out correlated variables from analysis of correlation matrix.
@ manageable for small number of variables.
@ impossible for large number of variables.
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Factoring

We consider two methods:

@ Principal components analysis (PCA).
@ Factor analysis.

These are applied to numerical variables.
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Some preliminary considerations

Suitability of data for the analysis:
@ there must be correlations between the variables.
Judged by:

o Kaiser-Meyer-Olkin (KMO) measures of sampling adequacy (MSA).
KMO > 0.7 required.

@ Bartlet's test of sphericity. P-value < 0.05 indicates presence of
correlations.
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Some preliminary considerations

Number of factors to extract:

@ Factors with Eigenvalues > 1 (Kaiser's rule).
o Cattell’s scree test.
o Parallel analysis.
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Principal components analysis
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Data redu

@ when we deal with many variables (multivariate) — may need to reduce
the number of variables.

@ questionnaire — hundred of variables.

@ genome study — few thousands variables.

@ data reduction — combine/group related variables into smaller sets of
variables.

@ can reduce burden of analysis and interpretation.
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@ a data reduction technique, basically a descriptive method.

@ uncover most important principal components from the data.

@ group correlated variables — uncorrelated principal components.

@ many variables — few component scores — subsequent analysis
e.g. multiple linear regression.
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Component variances

Basics:

@ say we have p variables — k components.

@ sum of all variable variaces = sum of component variances.

@ what PCA does, it extracts out few principal components that can
explain (as good as) the variances of all the variables.
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Research questions:

@ How many principal components are there?
@ Strength of relationship between variables and the components?
@ % of variance extracted by the components?
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Applications:

@ combine 100 IVs in a multiple linear regression into a number of
smaller principal components.
@ extract attitude factors from 60 items in a questionnaire analysis.
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Component loading:

@ variable-component relationship.
@ values > 0.3.
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Practical

pca_efa.R
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Factor analysis
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Factor analysis

@ latent variable model analysis.

@ group correlated items (in a measurement scale).

@ factor out latent (unobserved) factors cause the correlation between
the items.
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Factor analysis

@ in fields like psychology, we cannot observe directly psychological
states, thus measured indirectly in form items.
@ e.g. depression:

» depression causes symptoms of depression.

» depression (latent) is measured indirectly by items representing its
symptoms.

» prove the symptoms are correlated to each other, representing the
concept of depression rightarrow factor analysis.
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Common factor model

Common Factors + Measurement Error

Classification:

@ Exploratory factor analysis.
@ Confirmatory factor analysis.
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Exploratory factor analysis (EFA)
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@ explorative method.
@ e.g. at early of questionnaire development.
@ theory generating.
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Research questions:

How many factors are there?

Strength of relationship between items and the factors?
Factor correlations?

% variance explained by the extracted factors?
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Applications:

@ psychological scales/questionnaires, e.g. personality, depression, stress
etc.
@ explore the number of common factors in personality items.
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Extraction methods:

@ classical: Principal axis factoring.
@ other methods: Maximum likelihood, image analysis, alpha analysis.

Factor loading:

@ item-factor relationship.
@ values > 0.3.
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To simplify EFA results, may need factor rotation.

Types of rotation:

@ Orthogonal — uncorrelated factors.

» Varimax, Quartimax, Equamax.

@ Oblique — correlated factors.

» Oblimin, Promax.

Obtain clear factors and factor loadings.
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Confirmatory factor analysis (CFA)

Structural equation modeling (SEM):

@ measurement model — CFA.
@ structural model — path analysis.

Next lecture.
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Practical

pca_efa.R
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