Multinomial Logistic Regression

Dr Wan Nor Arifin

Biostatistics and Research Methodology Unit Universiti Sains Malaysia wnarifin@usm.my / wnarifin.github.io

Last update: Jun 11, 2023

Expected outcomes

- Understand the concept of multinomial logistic regression
- Perform multinomial logistic regression
- Perform model assessment
- Present and interpret results

Outlines

- Introduction
- Multinomial logistic regression model
- Model building:
 - Variable selection
 - Variable assessment
 - Interaction term assessment
 - Model fit assessment

- A regression method to model relationship between:
 - Outcome: <u>multinomial</u> categorical variable
 - Independent variables: numerical, categorical variables
- Multinomial i.e. multilevels, > than two levels
- Other names:
 - Discrete choice model; polychotomous/polytomous logistic regression model; baseline logit model

- Multinomial <u>measurement scale</u>
 - Nominal categorical variable
 - No order
 - Examples:
 - Diabetic treatment: Diet control, Oral hypoglycemic agent, Insulin
 - Birth: Spontaneous vaginal delivery, Assisted vaginal delivery, Caesarean delivery
 - Cancer subtypes etc.
- Versus ordinal categorical variable \rightarrow Ordinal logistic regression

• Model the relationship

multinomial outcome = numerical predictors + categorical predictors

• For a three-level outcome (0, 1, 2), it can be split into two binary outcomes:

binary outcome 1 = numerical predictors + categorical predictors

binary outcome 2 = numerical predictors + categorical predictors

where, treating 0 as reference category

binary outcome 1: 1 vs 0 binary outcome 2: 2 vs 0

Multinomial Logistic Regression Model

Logit Functions

• Extending binary logistic regression, these are specified as two logit functions *g*₁ and *g*₂:

$$g_{1}(\boldsymbol{x}) = ln \left[\frac{P(Y=1 | \boldsymbol{x})}{P(Y=0 | \boldsymbol{x})} \right] = ln \left(\frac{p_{1}}{p_{0}} \right) \text{ Compare 1 to 0}$$
$$= \beta_{10} + \beta_{11} x_{1} + \beta_{11} x_{2} + \dots + \beta_{1p} x_{p}$$

$$\begin{split} g_{2}(\boldsymbol{x}) &= ln \bigg[\frac{P(Y \!=\! 2 \,|\, \boldsymbol{x})}{P(Y \!=\! 0 \,|\, \boldsymbol{x})} \bigg] \!=\! ln \bigg(\frac{p_{2}}{p_{0}} \bigg) \text{ Compare 2 to 0} \\ &= \! \beta_{20} \!+\! \beta_{21} x_{1} \!+\! \beta_{21} x_{2} \!+\! \cdots \!+\! \beta_{2\,p} x_{p} \end{split}$$

for a vector \boldsymbol{x} comprising of p covariates and a constant term $x_0 = 1$

Odds Ratios

• Odds ratios for a covariate x_i are calculated as follows:

 $\operatorname{OR}_1(x_i) = e^{\beta_{1i}}$

$$\mathrm{OR}_2(x_i) \!=\! e^{eta_{2i}}$$

Conditional Probabilities

• The calculation for conditional probabilities is as follows:

$$P(Y=0 | \boldsymbol{x}) = \frac{1}{1+e^{g_1(\boldsymbol{x})}+e^{g_2(\boldsymbol{x})}}$$

$$P(Y=1 | \boldsymbol{x}) = \frac{e^{g_1(\boldsymbol{x})}}{1 + e^{g_1(\boldsymbol{x})} + e^{g_2(\boldsymbol{x})}}$$

$$P(Y=2 | \boldsymbol{x}) = \frac{e^{g_2(\boldsymbol{x})}}{1+e^{g_1(\boldsymbol{x})}+e^{g_2(\boldsymbol{x})}}$$

Testing Significance

- Wald test, W
- Likelihood ratio test, G

Testing Significance

• Wald test, W:

$$W = \frac{\hat{\beta}}{\widehat{SE}(\hat{\beta})}$$

then, two-tailed *P*-value is P(|z| > W), as *W* follows standard normal distribution.

• More suitable for testing a single variable.

Testing Significance

• Likelihood ratio test, G:

L0: Log Likelihood of model withOUT x variable(s) – L1: Log Likelihood of model with x variable(s)

$$G = -2(L_0 - L_1) \text{OR}$$

$$G = D_0 - D_1$$

$$D = D_0$$

$$2 \log \log k$$

 D_1 D = Deviance = -2 Log Likelihood of model

- then, *P*-value is $P[\chi^2(df) > G]$, as *G* follows standard normal distribution, and df = difference in number of parameters between the models.
- Suitable for testing single/many variables.

Model Building

Model-building Steps

- 1. Variable selection
 - Univariable
 - Multivariable
 - \rightarrow Preliminary main effects model
- 2. Variable assessment
 - Linearity in logit numerical variable, from separate binary logistic models
 - Other numerical issues
 - Small cell counts
 - Multicollinearity
 - \rightarrow Main effects model

Model-building Steps

- 3. Interaction term assessment
 - Two-way between selected variables clinically sensible
 - \rightarrow Preliminary final model
- 4. Model fit assessment
 - Goodness-of-fit
 - Multinomial Hosmer-Lemeshow Test
 - Pseudo- R^2
 - Regression diagnostics from separate binary logistic models
 - \rightarrow Final model