Ordinal Logistic Regression

Dr Wan Nor Arifin

Biostatistics and Research Methodology Unit Universiti Sains Malaysia wnarifin@usm.my / wnarifin.github.io

Last update: Jun 11, 2023

Expected outcomes

- Understand the concept of ordinal logistic regression
- Perform ordinal logistic regression
- Perform model assessment
- Present and interpret results

Outlines

- Introduction
- Ordinal logistic regression model
- Model building:
 - Variable selection
 - Variable assessment
 - Interaction term assessment
 - Model fit assessment

- A regression method to model relationship between:
 - Outcome: <u>ordinal</u> categorical variable
 - Independent variables: numerical, categorical variables
- Ordinal i.e. rank order of categories > than two levels

- Ordinal <u>measurement scale</u>
 - Ordinal categorical variable
 - Ordered
 - Examples:
 - Disease severity: Mild, Moderate, Severe
 - Opinion: Disagree, Neutral, Agree
 - Cancer stages etc.

• Model the relationship

• For a *K* + 1 <u>ordered</u> outcome (e.g. *K* = 0, 1, 2, 3 for four categories), THREE main models:

Model	Proportional Odds	Adjacent-category Logit	<u>Constrained</u> Continuation-ratio Logit
Other Name	<u>Constrained</u> Cumulative Logit	<u>Constrained</u> Baseline Logit	_
Specification	$Y \le k \operatorname{vs} Y \ge k$	Y = k vs Y = k - 1	Y = k vs Y < k
Example	$0 vs > 0 (1,2,3) \leq 1 (0,1) vs > 1 (2,3) \leq 2 (0,1,2) vs > 2 (3)$	1 vs 0 2 vs 1 3 vs 2	$ \begin{array}{r} 1 \text{ vs} < 1 (0) \\ 2 \text{ vs} < 2 (0,1) \\ 3 \text{ vs} < 3 (0,1,2) \end{array} $

• Let's compare the logits:

Model	Proportional Odds	Adjacent-category Logit	<u>Constrained</u> Continuation-ratio Logit
Logits	$ \begin{array}{l} c_k(\pmb{x}) \\ = & ln \bigg[\frac{P(Y \leq k \pmb{x})}{P(Y > k \pmb{x})} \bigg] \end{array} $	$\begin{array}{l} a_k(\boldsymbol{x}) \\ = ln \bigg[\frac{P(Y\!=\!k \boldsymbol{x})}{P(Y\!=\!k\!-\!1 \boldsymbol{x})} \bigg] \end{array}$	$ \begin{array}{l} r_k(\boldsymbol{x}) \\ = ln \bigg[\frac{P(Y\!=\!k \boldsymbol{x})}{P(Y\!<\!k \boldsymbol{x})} \bigg] \end{array} \end{array} $
	$= \tau_k - \boldsymbol{x}' \boldsymbol{\beta}$ Minus here to be consistent with most software packages		$= \theta_k + \boldsymbol{x}^{T} \boldsymbol{\beta}$

- All models have <u>different</u> intercepts for each logit (i.e. by *k*)
- ... but have <u>same</u> slope coefficients across all logits (i.e. for all k) <u>constrained</u>
- ... i.e. a single odds ratio easier to interpret than multinomial logistic regression
- **Proportion odds** model frequently used, most intuitive (less than or equal *vs* more) focus of this lecture.

Proportional Odds Logistic Regression Model for Ordinal Outcome

Logit Functions

• A logit function for proportional odds is given as:

$$\begin{split} c_k(\boldsymbol{x}) &= ln \left[\frac{P(Y \leq k \mid \boldsymbol{x})}{P(Y > k \mid \boldsymbol{x})} \right] \\ &= ln \left[\frac{P(Y = 0 \mid \boldsymbol{x}) + P(Y = 1 \mid \boldsymbol{x}) \dots P(Y = k \mid \boldsymbol{x})}{P(Y = k + 1 \mid \boldsymbol{x}) + P(Y = k + 2 \mid \boldsymbol{x}) \dots P(Y = K \mid \boldsymbol{x})} \right] \\ &= \tau_k - \boldsymbol{x}^{\mathsf{T}} \boldsymbol{\beta} \end{split}$$

For vector \boldsymbol{x} comprising of p covariates and k = 0, 1, 2, ..., K-1 for K + 1 categories

Logit Functions

• An example of a logit function for proportional odds when k = 1:

$$\begin{split} c_1(\boldsymbol{x}) &= ln \left[\frac{P(Y \leq 1 \mid \boldsymbol{x})}{P(Y > 1 \mid \boldsymbol{x})} \right] \\ &= ln \left[\frac{P(Y = 0 \mid \boldsymbol{x}) + P(Y = 1 \mid \boldsymbol{x})}{P(Y = 2 \mid \boldsymbol{x}) + P(Y = 3 \mid \boldsymbol{x})} \right] \\ &= \tau_1 - \boldsymbol{x}^{\mathsf{T}} \boldsymbol{\beta} \end{split}$$

Odds Ratios

- Since the <u>constraint</u> gives us a single coefficient, the odds ratio is straight forward to calculate similar to a binary logistic regression
- This is calculated for a covariate x_i as follows:

$$OR(x_i) = e^{\beta_i}$$

regardless of the outcome categories to be compared i.e. only concerned with <u>less than or equal</u> vs <u>more</u>

So it does not matter (0,1) vs (2,3) OR (0) vs (1,2,3) because the odds is proportionate → proportional odds assumption

Cumulative Probabilities

• In order to obtain individual outcome probabilities, for proportional odds model, it requires the calculation for cumulative probabilities as follows:

$$\pi_k(oldsymbol{x}) {=} rac{e^{c_k(oldsymbol{x})}}{1{+}e^{c_k(oldsymbol{x})}}$$

Individual Outcome Probabilities

• Following the cumulative probabilities calculation, we may then calculate individual probabilities as follows:

$$P(Y = k | \boldsymbol{x}) = \begin{cases} \pi_0(\boldsymbol{x}), & k = 0 \\ \pi_k(\boldsymbol{x}) - \pi_{k-1}(\boldsymbol{x}), & k = 1, \dots, K-1 \\ 1 - \pi_{K-1}(\boldsymbol{x}), & k = K \end{cases}$$

Individual Outcome Probabilities

• An example when k = 1:

$$\pi_{1}(\boldsymbol{x}) = \frac{e^{c_{1}(\boldsymbol{x})}}{1 + e^{c_{1}(\boldsymbol{x})}}$$
$$\pi_{0}(\boldsymbol{x}) = \frac{e^{c_{0}(\boldsymbol{x})}}{1 + e^{c_{0}(\boldsymbol{x})}}$$

$$\begin{split} P(Y = 1 | \boldsymbol{x}) &= \pi_k(\boldsymbol{x}) - \pi_{k-1}(\boldsymbol{x}) \\ &= \pi_1(\boldsymbol{x}) - \pi_0(\boldsymbol{x}) \end{split}$$

Testing Significance

- Wald test, W
- Likelihood ratio test, G

Testing Significance

• Wald test, W:

$$W = \frac{\hat{\beta}}{\widehat{SE}(\hat{\beta})}$$

then, two-tailed *P*-value is P(|z| > W), as *W* follows standard normal distribution.

• More suitable for testing a single variable.

Testing Significance

• Likelihood ratio test, G:

Log Likelihood of model withOUT x variable(s) – Log Likelihood of model with x variable(s)

$$G = -2(L_0 - L_1) \text{OR}$$

$$G = D_0 - D_1$$

 $D_0 - D_1$ -2 Log Likelihood of model

- then, *P*-value is $P[\chi^2(df) > G]$, as *G* follows standard normal distribution, and df = difference in number of parameters between the models.
- Suitable for testing single/many variables.

Model Building

Model-building Steps

- 1. Variable selection
 - Univariable
 - Multivariable
 - \rightarrow Preliminary main effects model
- 2. Variable assessment
 - Linearity in logit numerical variable
 - Other numerical issues
 - Small cell counts
 - Multicollinearity
 - \rightarrow Main effects model

Model-building Steps

- 3. Interaction term assessment
 - Univariable
 - Multivariable
 - \rightarrow Preliminary final model
- 4. Model fit assessment
 - Proportional odds assumption check Brant Test
 - Goodness-of-fit
 - Lipsitz Test, Ordinal Hosmer-Lemeshow Test
 - Pseudo- R^2
 - Regression diagnostics from separate binary logistic models
 - \rightarrow Final model