Categorical Data Analysis

Dr. Wan Nor Arifin

Biostatistics and Research Methodology Unit Universiti Sains Malaysia wnarifin@usm.my / wnarifin.github.io

Last update: Dec 20, 2025

Outlines

- Introduction
- Chi-squared Test of Association
- Fisher's Exact Test
- McNemar's Test

Learning outcomes

- Understand the concepts behind each test
- Understand when to use each test
- Able to perform chi-squared, Fisher's exact and McNemar's tests using SPSS, and interpret the results

Introduction

Introduction

- Factor (IV) and Outcome (DV) variables are both categorical
- Analyses of contingency / cross-tabulation table
- Depending on # categories of each
- e.g. 2x2, 3x2, 3x3 and so on
- Analyze cell counts

Introduction

- Analyses covered:
 - Chi-squared test
 - Fisher's exact test
 - McNemar's test

Chi-squared Test of Association

About

- Non-parametric test
- TWO independent samples
- Association between TWO categorical variables

About

- Cross-tabulation between TWO variables
- The association between the variables are made by comparing the <u>observed cell counts</u> (from data) with the <u>expected cell counts</u> (i.e. the count when variables are not associated to each other)

Observed Count (O)

G 1	Lung (Lung Cancer		
Smoker	Yes	No	Row Total	62.5%
Yes	20	12	32	32.7%
No	55	113	168	
Column Total	75	125	200	

Expected Count (E)

G 1	Lung (D T / 1	
Smoker	Yes	No	Row Total
Yes	32*75/200 = 12	32*125/200 = 20	32
No	168*75/200 = 63	168*125/200 = 105	168
Column Total	75	125	200

 $E = (Row Total \times Column Total) / Grand Total$

Chi-square (X²)

$$X^{2} = SUM(\frac{[O-E]^{2}}{E})$$

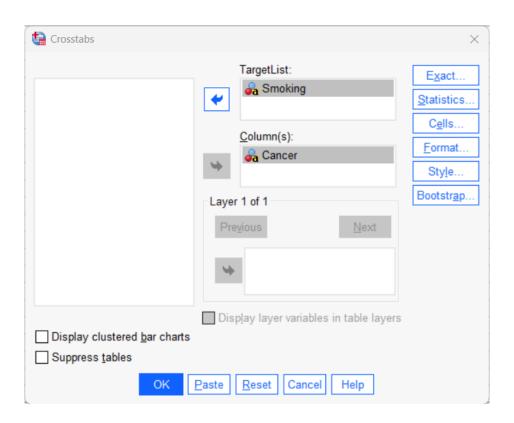
$$df = (r-1)(c-1)$$

df = degree of freedom, r = # row, c = # column

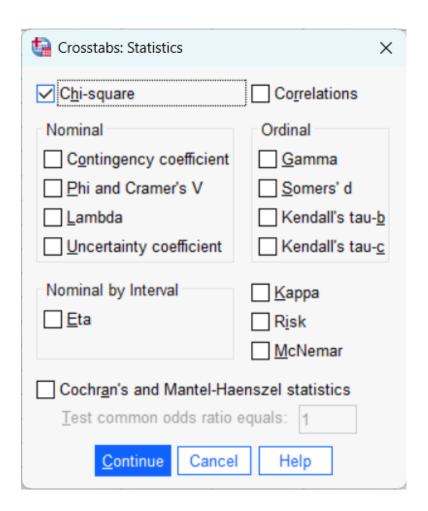
$X^2 = SUM([O - E]^2/E)$

G 1	Lung (
Smoker	Yes	No	
Yes	$(20-12)^2/12$ =5.33	$(12-20)^2/20$ =3.20	
No	$(55-63)^2/63$ =1.00	$(113-105)^2/105$ $=0.61$	
	$X^2 = SUM$	10.14	

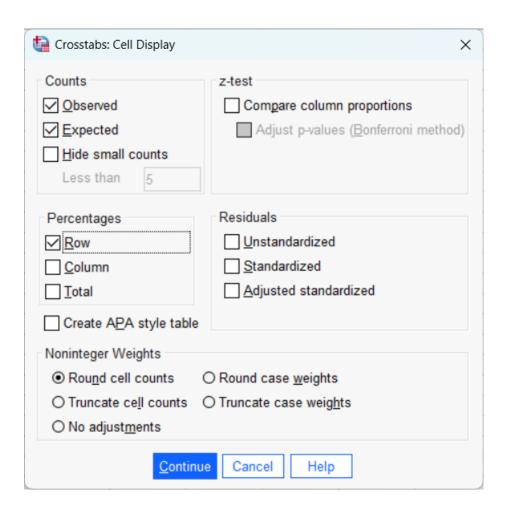
These values will be used by statistical software to get P-value


$$df = (2-1) * (2-1) = 1$$

Limitation


- Requirement < 25% expected cell counts < 5
- If this assumption of X^2 is violated \rightarrow Use Fisher's exact

- Dataset: lung.sav
- Variables:
 - Smoking = Yes/No
 - Cancer = Yes/No


- Open Crosstabs menu
 - Analyze →
 Descriptive
 Statistics →
 Crosstabs
 - TargetList =Smoking,Column(s) = Cancer

- Statistics button
 - Check Chi-square
 - Continue

- Cells button
 - Check Observed,Expected and Row
 - Continue, then OK in Crosstabs main window

Results

P < 0.05, Sig. Association between Smoking & Cancer (2 sided)

Smoking * Cancer Crosstabulation

			ncer		
			cancer	no cancer	Total
Smoking	smoking	Count	20	12	32
		Expected Count	12.0	20.0	32.0
		% within Smoking	62.5%	37.5%	100.0%
	no smoking	Count	55	113	168
		Expected Count	63.0	105.0	168.0
		% within Smoking	32.7%	67.3%	100.0%
Total		Count	75	125	200
		Expected Count	75.0	125.0	200.0
		% within Smoking	37.5%	62.5%	100.0%

Chi-Square Tests

	Value	df	Asymptotic Significance (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	10.159 ^a	1	.001		
Continuity Correction ^b	8.929	1	.003		
Likelihood Ratio	9.830	1	.002		
Fisher's Exact Test				.002	.002
Linear-by-Linear Association	10.108	1	.001		
N of Valid Cases	200				

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 12.00.

Assumption fulfilled for X² (E < 5 less < 25%)

b. Computed only for a 2x2 table

• Interpretation:

Based on the result of chi-squared test, there was a significant association between smoking and lung cancer.

• $*X^2 = 10.159$, df = 1, P = 0.001

Fisher's Exact Test

About

- Alternative of chi-squared test when its requirement is not fulfilled
- For cross-tabulation with small cell counts (rare disease) small expected cell counts
- Gives exact *P*-value, no statistical distribution involved (unlike chi-squared distribution)

Observed Count (O)

G 1	Lung (Cancer	D T 1	
Smoker	Yes	No Row Total		33.3%
Yes	5	10	15	6.7%
No	2	28	30	0.170
Column Total	7	38	45	

Expected Count (E)

G 1	Lung (D T / 1	
Smoker	Yes	No	Row Total
Yes	15*7/45 = 2.33	15*38/45 = 12.67	15
No	30*7/45 = 4.67	30*38/45 = 25.33	30
Column Total	7	38	45

2/4 cells < 5 = 50%Cannot use X^2 !

Fisher's exact

G 1	Lung (D T 4 1	
Smoker	Yes	No	Row Total
Yes	a	b	a + b
No	c	d	c + d
Column Total	a + c	b + d	n

$$p = \frac{(a+b)!(c+d)!(a+c)!(b+d)!}{a!b!c!d!n!}$$

Fisher's exact

C 1	Lung (D T / 1	
Smoker	Yes	No	Row Total
Yes	a = 5	b = 10	a+b=15
No	c=2	d = 28	c + d = 30
Column Total	a+c=7	b + d = 38	n = 45

Calculate these by statistical software to get P-value

$$p = \frac{15!30!7!38!}{5!10!2!28!45!}$$

Fisher's exact

G 1	Lung (
Smoker	noker Yes		Row Total
Yes	a = 5	b = 10	a+b=15
No	c=2	d = 28	c + d = 30
Column Total	a+c=7	b + d = 38	n = 45

$$p = 0.028$$

- Dataset: lung_small.sav
- Variables:
 - Smoking = Yes/No
 - Cancer = Yes/No

• Same steps as chi-squared test, read Fisher's exact result

Results

P < 0.05, Sig. Association between Smoking & Cancer (exact 2 sided)

Clearly, assumption violated for X² (E < 5 less < 25%)

Smoker * Cancer Crosstabulation

		Cancer			
			No	Yes	Total
Smoker	No	Count	28	2	30
		Expected Count	25.3	4.7	30.0
		% within Smoker	93.3%	6.7%	100.0%
	Yes	Count	10	5	15
		Expected Count	12.7	2.3	15.0
		% within Smoker	66.7%	33.3%	100.0%
Total		Count	38	7	45
		Expected Count	38.0	7.0	45.0
		% within Smoker	84.4%	15.6%	100.0%

Chi-Square Tests

	Value	df	Asymptotic Significance (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	5.414 ^a	1	.020		
Continuity Correction ^b	3.574	1	.059		
Likelihood Ratio	5.109	1	.024		
Fisher's Exact Test				.032	.032
Linear-by-Linear Association	5.293	1	.021		
N of Valid Cases	45				

a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 2.33.

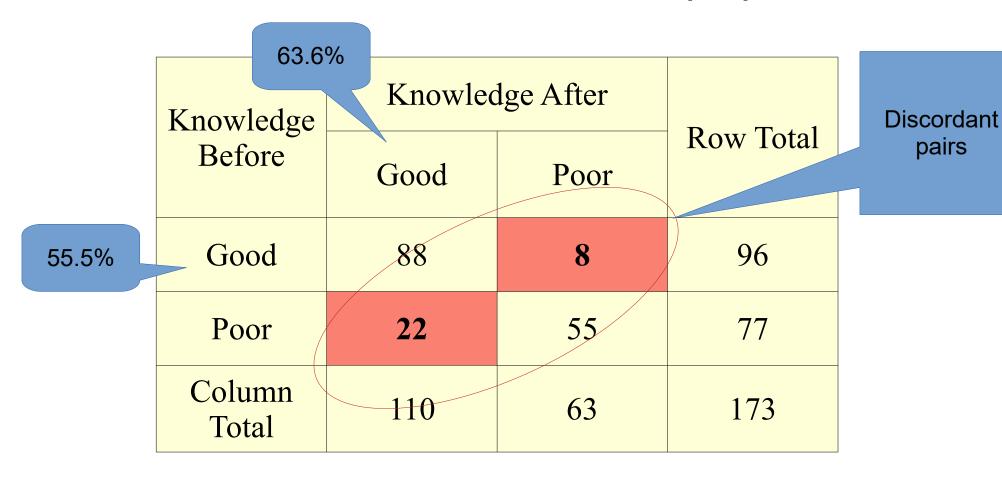
b. Computed only for a 2x2 table

• Interpretation:

Based on the result of Fisher's exact test, there was a significant association between smoking and lung cancer.

• *Fisher's exact P = 0.032, chi-squared test assumption was not fulfilled as 50% cells come with expected count < 5

McNemar's Test


About

- Non-parametric test
- TWO dependent samples
- Association between TWO repeated categorical outcomes
- Change in proportions of outcome BEFORE and AFTER
- Indirectly, associated with what is done in between the time points (intervention etc.)

About

- Cross-tabulation between TWO variables limited to 2x2 only
- It is concerned with whether the subjects still have the same outcomes (concordant) or different outcomes (discordant) upon repetition (pre-post)
- The association/change is determined by looking at the discordant cells

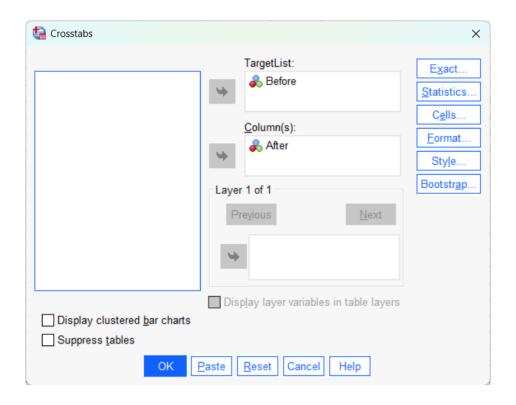
Observed Count (O)

Chi-square (X²) for McNemar

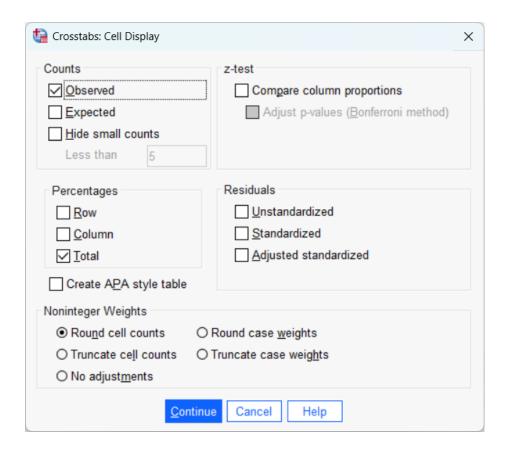
Knowledge Before	Knowledge After		D T . 1
	Good	Poor	Row Total
Good	a	b	a+b
Poor	c	d	c+d
Column Total	a + c	b + d	n

$$X^2 = \frac{(b-c)^2}{b+c} \text{ with } df = 1$$

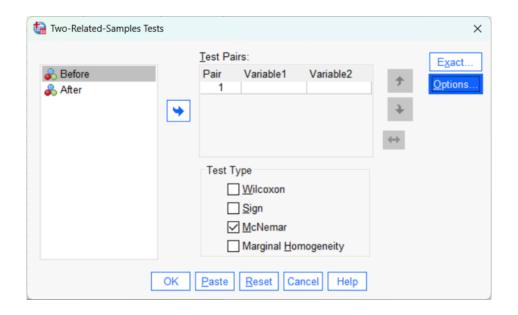
Chi-square (X²) for McNemar


Knowledge Before	Knowledge After		D T 1
	Good	Poor	Row Total
Good	88	8	15
Poor	22	55	30
Column Total	7	38	45

These values will be used by statistical software to get P-value


$$X^2 = \frac{(8-22)^2}{8+22} = 6.53, df = 1$$

- Dataset: knowledge.sav
- Variables:
 - − Before = Good/Poor
 - After = Good/Poor


- Open Crosstabs menu
 - Analyze →
 Descriptive
 Statistics →
 Crosstabs
 - TargetList = Before,Column(s) = After

- Cells button
 - Check Observed and Total
 - Continue, then OK in Crosstabs main window

- Open 2 Related Samples menu
 - Analyze → Nonparametric Tests →
 Legacy Dialogs →2
 Related Samples
 - Add Before and After in Test Pairs
 - Uncheck Wilcoxon,
 Check McNemar
 - OK

Results

Before * After Crosstabulation

			After		
			Good	Poor	Total
Before	Good	Count	88	8	96
		% of Total	50.9%	4.6%	55.5%
	Poor	Count	22	55	77
		% of Total	12.7%	31.8%	44.5%
Total		Count	110	63	173
		% of Total	63.6%	36.4%	100.0%

Before intervention wire education module

After intervention with education module

P < 0.05, Sig. change prepost

Test Statistics

	Before & After
N	173
Chi-Square ^b	5.633
Asymp. Sig.	.018

- a. McNemar Test
- b. Continuity Corrected

• Interpretation:

Based on the result of McNemar's test, there was a significant change in percentage of good knowledge from 55.5% before and 63.6% after intervention. This difference/change is associated with the education module used for the intervention

• *McNemar's test, $X^2 = 5.63$, P = 0.018

Tutorial

Tutorial

- Datasets:
 - X²: alzheimer.sav
 - Fisher: eofad.sav
 - McNemar: mmse.sav