Confirmatory factor analysis

Wan Nor Arifin

Unit of Biostatistics and Research Methodology, Universiti Sains Malaysia.

email: wnarifin@usm.my

December 15, 2018

2 Confirmatory vs Exploratory factor analysis

3 Confirmatory factor analysis (CFA)

- understand the basic concepts and application of CFA.
- able to perform CFA using R.

Introduction

Structural equation modeling (SEM):

- measurement model CFA.
- structural model path analysis.

- confirmatory method e.g. at final stage of questionnaire development.
- theory confirmation.
- based on common factor model similar to EFA.
- accounts for measurement errors.
- analysis done on variance-covariance matrix.
- allows assessment of model fit.

Confirmatory vs Exploratory factor analysis

CFA items:

- I love fast food
- I hate vegetable
- I hate eating fruits
- I hate exercise

 $\rightarrow \text{Obesity}$

CFA vs EFA

EFA items:

- I love cat
- I hate snake
- I love statistics
- I love snorkelling
- I support Harimau Malaya team
- I love driving car
- I love computer game
- I like to have everything normally distributed
- I think of independent t-test everyday
- My favourite food is nasi ayam
- I used to eat a lot of pisang goreng
- I spend most of my time in front of computer
- I love SPSS

\rightarrow What factors???

EFA	CFA	
Exploratory procedure.	Confirmatory procedure.	
No pre-requisite to specify	Pre-specified theoretical factors.	
theoretical factors for a collections of items.		
Aims to explore the items and	Strong theory. Just want to confirm.	
extract common ideas. Theory		
generating based on empirical findings.		
Items free loading and not	Items are fixed to pre-specified factors.	
fixed to factors.		
Rotation of factors is used	Rotation not used.	
to allow simpler solution.		
Explicit hypothesis is not	Explicit hypothesis testing. Allows assessment	
tested.	of model fit (χ^2 GOF, Fit indices).	

Confirmatory factor analysis (CFA)

Path diagram representation of our previous EFA model:

Research question:

- Does our theoretical measurement model (factor + item + correlation) fit the data?
- Strength of relationship between items and the factors?
- Factor correlations?
- \rightarrow confirm the theory.

Applications:

- confirm the measurement model of newly developed questionnaires in target populations.
- confirm the measurement model of existing questionnaires in new populations.
- confirm the measurement model translated questionnaires in new populations.
- \rightarrow confirmatory role of the analysis.

Estimations methods:

- numerical scale + multivariate normal data \rightarrow maximum likelihood.
- numerical scale + non-multivariate normal data \rightarrow robust maximum likelihood.
- categorical scale \rightarrow weighted least squares.

Many more ... http://lavaan.ugent.be/tutorial/est.html

Results to focus on,

- Overall model fit by fit indices.
- Parameter estimates
 - Factor loadings.
 - Factor correlations.
- Iccalized areas of misfit
 - Modification indices.
 - Residuals.

Fit indices.

The following are a number of selected fit indices and the recommended cut-off values (Brown, 2015; Schreiber, Nora, Stage, Barlow, & King, 2006):

Category	Fit index	Cut-off
Absolute fit	χ^2	P>0.05
	Standardized root mean square (SRMR)	≤ 0.08
Parsimony correction	Root mean square error of	and its 90% CI \leq 0.08,
	approximation (RMSEA)	CFit <i>P</i> >0.05
Comparative fit	Comparative fit index (ĆFI) Tucker-Lewis index (TLI)	≥ 0.95

- 2 Parameter estimates: Factor loadings (FLs).
 - The guideline for EFA is applicable also to CFA (FL > 0.3).
 - In addition, the *P*-values of the FLs must be significant (at $\alpha = 0.05$).
 - Also look for out-of-range values FLs should be in range of 0 to 1 (absolute values).

- 2 Parameter estimates: Factor correlations.
 - $\bullet\,$ Similar to EFA, a factor correlation must be < 0.85, which indicates that the factors are distinct.
 - A correlation > 0.85 indicates multicollinearity problem (Brown, 2015).
 - Also look for out-of-range values factor correlations should be in range of 0 to 1 (absolute values).

2 Parameter estimates

- Out-of-range values are called *Heywood cases* or *offending estimates* (Brown, 2015).
- When a model has Heywood cases, the solution is not acceptable.
- The variance-covariance matrix (of our data) could be *non-positive definite* i.e. the matrix is not invertible for the analysis.

- Solution Localized areas of misfit: Residuals (Brown, 2015):
 - Residuals are the difference between the values in the sample and model-implied variance-covariance matrices.
 - Standardized residuals (SRs) > |2.58| indicate the standardized discrepancy between the matrices.

- Solution Localized areas of misfit: Modification indices (MIs) (Brown, 2015):
 - A modification index indicates the expected parameter change if we include a particular specification in the model.
 - e.g. by correlating between errors of Q1 and Q2.
 - Specifications with MIs > 3.84 should be investigated.

Model revision - to improve model fit. Causes of poor fit:

- Item Iow FL, wrong factor.
- Factor multicollinearity.
- Correlated error items with similar wording/meaning.
- Model not supported by data.

Model-to-model comparison - to choose the best model.

- Compare models that do not involve item removal Nested model
 - χ^2 difference.
 - ► AIC (Akaike Information Criterion) and BIC (Bayesian Information Criterion).
 - ▶ Better model = Smaller AIC/BIC (Brown, 2015).
- Ompare models that involves item removal Non-nested model
 - AIC and BIC.

$cfa_short.R$

Brown, T. A. (2015). *Confirmatory factor analysis for applied research*. New York: The Guilford Press.

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). *Multivariate data analysis.* New Jersey: Prentice Hall.

Schreiber, J. B., Nora, A., Stage, F. K., Barlow, E. A., & King, J. (2006). Reporting structural equation modeling and confirmatory factor analysis results: A review. *The Journal of Educational Research*, *99*(6), 323–338.