Multiple Logistic Regression

Dr. Wan Nor Arifin

Unit of Biostatistics and Research Methodology, Universiti Sains Malaysia.

wnarifin@usm.my / wnarifin.github.io

Outlines

- Introduction
- Steps in Multiple Logistic Regression

1. Descriptive Statistics
2. Variable Selection
3. Model Fit Assessment
4. Final Model Interpretation \& Presentation

Objectives

1.Understand the reasons behind the use of logistic regression.
2.Perform multiple logistic regression in SPSS.
3.Identify and interpret the relevant SPSS outputs.
4.Summarize important results in a table.

Introduction

- Logistic regression is used when:
- Dependent Variable, DV: A binary categorical variable [Yes/ No], [Disease/No disease] i.e the outcome.
- Simple logistic regression - Univariable:
- Independent Variable, IV: A categorical/numerical variable.
- Multiple logistic regression - Multivariable:
- IVs: Categorical \& numerical variables.
- Recall - Multiple Linear Regression?

Introduction

- Multiple Linear Regression
$-y=a+b_{1} x_{1}+b_{2} x_{2}+\ldots+b_{n} x_{n}$
- Multiple Logistic Regression
$-\log ($ odds $)=a+b_{1} x_{1}+b_{2} x_{2}+\ldots+b_{n} x_{n}$
- That's why it is called "logistic" regression.

Introduction

- Binary outcome: Concerned with Odds Ratio.
- Odds is a measure of chance like probability.
- Odds = n(Disease)/n(no Disease) among a group.
- Odds Ratio, OR = Odds(Factor)/Odds(No factor)
- Applicable to all observational study designs.
- Relative Risk, RR
- Only cohort study.
- OR \approx RR for rare disease, useful to determine risk.

Introduction

Factor vs CAD	CAD	No CAD
Man	$24[\mathrm{a}]$	$76[b]$
Woman (i.e. not Man)	$13[c]$	$87[d]$

- $\operatorname{Odds}(m a n)=a / b=24 / 76=0.32$
- Odds(woman) $=$ c/d = 13/87 $=0.15$
- $\mathrm{OR}($ man $/$ woman $)=0.32 / 0.15=2.13$
- Shortcut, OR = ad/bc = (24x87)/(76x13) = 2.11

Introduction

Factor vs CAD	CAD	No CAD
Man	$24[\mathrm{a}]$	$76[b]$
Woman (i.e. not Man)	$13[c]$	$87[d]$

- $\operatorname{Risk}(m a n)=$ Proportion CAD $=a /(a+b)=0.24$
- Risk(woman) $=$ Proportion CAD c/(c+d) $=0.13$
- $\operatorname{RR}($ man $/$ woman $)=0.24 / 0.13=1.85 \approx 0 R, 2.11$

Steps in Multiple Logistic Regression

- Dataset: slog.sav
- Sample size, n=200
- DV: cad (1: Yes, 0: No)
- IVs:
- Numerical: sbp (systolic blood pressure), dbp (diastolic blood pressure), chol (serum cholesterol in mmol/L), age (age in years), bmi (Body Mass Index).
- Categorical: race (0: Malay, 1: Chinese, 2: Indian), gender (0: Female, 1: Male)

Steps in Multiple Logistic Regression

1.Descriptive statistics.

2.Variable selection.
a. Univariable analysis.
b. Multivariable analysis.
c. Multicollinearity.
d. Interactions.
3.Model fit assessment.
4.Final model interpretation \& presentation.

1. Descriptive statistics

- Set outputs by CAD status.
- Data \rightarrow Split File \rightarrow Select Compare groups
- Set Groups Based on: cad, OK

1. Descriptive statistics

- Obtain mean(SD) and $\mathrm{n}(\%)$ by CAD group.
- Analyze \rightarrow Descriptive Statistics \rightarrow Frequencies
- Include relevant variables in Variables

1. Descriptive statistics

- Cont...

- Statistics \rightarrow tick \rightarrow Continue

1. Descriptive statistics

- Cont...

- Charts \rightarrow tick \rightarrow Continue \rightarrow OK

Frequencies: Charts $+x$

Chart Type
(ㅇ) None
(9) Ear charts
(c) Pie charts
(C) Histograms:
\checkmark Show normal curve on histogram
CChart Values
(9) Frequencies () Percentages

Continue Cancel Help

1. Descriptive statistics

- Results

Statistics

cad coronary artery disease			sbp Systolic Blood Pressure	dbp Diastolic Blood Pressure	chol serum cholesterol ($\mathrm{mmol} / \mathrm{l}$)	age Age in Years	bmi Body Mass Index	race ethnicity	gender gender
0 no cad	N	Valid	163	163	163	163	163	163	163
		Missing	0	0	0	0	0	0	0
Mean			129.29	80.80	6.0970	45.15	36.9086	.94	47
Median			124.00	80.00	6.0500	44.00	37.9000	1.00	.00
Std. Deviation			22.264	12.607	1. 16633	8.412	3.77178	. 826	. 500
Minimum			88	56	4.00	31	25.30	0	0
Maximum			218	120	9.35	62	41.20	2	1
	Percentiles	25	114.00	70.00	5.3350	37.00	36.1000	.00	.00
		50	124.00	80.00	6.0500	44.00	37.9000	1.00	.00
		75	140.00	90.00	6.7650	52.00	39.2000	2.00	1.00
1 cad	N	Valid	37	37	37	37	37	37	37
	Mean Missing		0	0	0	0	0	0	0
			143.76	88.97	6.6459	47.43	36.4464	. 97	.65
	Median		138.00	90.00	6.6550	50.00	37.1248	1.00	1.00
	Std. Deviation		25.611	12.171	1.17041	8.796	3.99414	. 833	484
	Minimum		100	70	4.13	33	25.50	0	0
	Maximum		224	114	9.05	61	45.03	2	1
	Percentiles		122.00	78.00	5.9537	38.50	34.0802	.00	.00
		50	138.00	90.00	6.6550	50.00	37.1248	1.00	1.00
		75	159.00	97.00	7.2875	55.00	38.8146	2.00	1.00

1. Descriptive statistics

- Results

cad coronary artery disease			Frequency	Percent	Valid Percent	Cumulative Percent
0 no cad	Valid	0 malay	60	36.8	36.8	36.8
		1 chinese	52	31.9	31.9	68.7
		2 indian	51	31.3	31.3	100.0
		Total	163	100.0	100.0	
1 cad	Valid	0 malay	13	35.1	35.1	35.1
		1 chinese	12	32.4	32.4	67.6
		2 indian	12	32.4	32.4	100.0
		Total	37	100.0	100.0	

gender gender

cad coronary artery disease		Frequency	Percent	Valid Percent	Cumulative Percent
0 no cad	Valid	0 woman	87	53.4	53.4
		1 man	76	46.6	46.6
		Total	163	100.0	100.0

1. Descriptive statistics

- Results

- Look at histograms to decide data normality for numerical variables. Remember your Basic Stats!
- Caution! Reset back the data.
- Data \rightarrow Split File \rightarrow Select Analyze all cases

- OK

1. Descriptive statistics

- Present the results in a table.

Factors		$\begin{aligned} & \text { CAD, } n=37 \\ & \text { mean(SD) } \end{aligned}$	$\begin{aligned} & \text { No CAD, } \mathrm{n}=163 \\ & \text { mean(SD) } \end{aligned}$
Systolic Blood Pressure		143.8(25.61)	129.3(22.26)
Diastolic Blood Pressure		89.0(12.17)	80.8(12.61)
Cholesterol		6.6(1.17)	6.1(1.17)
Age		47.4(8.80)	45.2(8.41)
BMI		36.4(3.99)	36.9(3.77)
Race*	Malay Chinese Indian	$\begin{aligned} & 13(35.1 \%) \\ & 12(32.4 \%) \\ & 12(32.4 \%) \end{aligned}$	$\begin{aligned} & 60(36.8 \%) \\ & 52(31.9 \%) \\ & 51(31.3 \%) \end{aligned}$
Gender*	Male Female	$\begin{aligned} & 24(64.9 \%) \\ & 13(35.1 \%) \end{aligned}$	$\begin{aligned} & 76(46.6 \%) \\ & 87(53.4 \%) \end{aligned}$

2. Variable selection

- To select best variables to predict the outcome.
- Sub-steps:
a. Univariable analysis.
b. Multivariable analysis.
c. Checking multicollinearity \& interactions.

2a. Univariable analysis

- Perform Simple Logistic Regression on each IV.
- Select IVs which fullfill:
- P-value $<0.25 \rightarrow$ Statistical significance.
- Clinically significant IVs \rightarrow You decide.

2a. Univariable analysis

- Analyze numerical variables:
- Analyze \rightarrow Regression \rightarrow Binary Logistic
- Dependent: cad, Covariates: sbp
- Click Options \rightarrow Tick Iteration history, Cl for $\exp (B) \rightarrow$ Continue \rightarrow OK
- Repeat for dbp, chol, age, bmi

\square Conserve memory for complex analyses or large datasets
\downarrow Include constant in model
Continue Cancel Help

2a. Univariable analysis

- Results

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	10.464	1	.001
	Block	10.464	1	.001
	Model	10.464	1	.001

SBP P-value $=0.001$ by
Wald test

Variables in the Equation

		B	S.E.	Wald	df	Sig.	$\operatorname{Exp}(\mathrm{B})$	95\% C.I.for EXP(B)		
		Lower						Upper		
Step 1a sbp Constant			. 024	. 007	10.290	1	. 001	1.024	1.009	1.039
		-4.684	1.039	20.303	1	000	009			

a. Variable(s) entered on step 1: sbp.

- $\operatorname{Exp}(B)$ is OR.
- OR(1 unit \uparrow in SBP) =1.04(95\% CI: 1.01, 1.04). Unadjusted/ Crude OR.
- Interpretation: 1 mmHg increase in SBP increase odds of CAD by 1.02 times.
- In variable selection context, less concern about OR \& interpretation.

2a. Univariable analysis

- Analyze categorical variables:
- Dependent: cad, Covariates: gender
- Click Categorical \rightarrow Categorical Covariates: gender \rightarrow Change Contrast \rightarrow Reference Category: First \rightarrow Change \rightarrow Continue.
- Repeat for race

2a. Univariable analysis

- Results

Categorical Variables Codings

Omnibus Tests of Model Coeffitients

		Chi-square	df	Sig.
Step 1	Step	4.063	1	.044
	Block	4.063	1	.044
	Model	4.063	1	.044

Women=0 becomes the reference group.

Model: Gender P value=0.044 by LR test

Gender P-value $=0.048$ by Wald test

Variables in the Equation

- $\mathrm{OR}($ male $)=2.11$ (95% CI: 1.01, 4.44). Unadjusted/Crude OR.
- Interpretation: Man has 2.11 times odds of CAD as compared to woman.

2a. Univariable analysis

- P-values of IVs - select P-value < 0.25

Factors	\boldsymbol{P}-value (Wald test)	\boldsymbol{P}-value (LR test)
Systolic Blood Pressure	$\mathbf{0 . 0 0 1}$	$\mathbf{0 . 0 0 1}$
Diastolic Blood Pressure	$\mathbf{0 . 0 0 1}$	$\mathbf{0 . 0 0 1}$
Cholesterol	$\mathbf{0 . 0 1 2}$	$\mathbf{0 . 0 1 1}$
Age	$\mathbf{0 . 1 4 3}$	$\mathbf{0 . 1 4 1}$
	BMI	0.505
	Chinese-vs-Malay Indian-vs-Malay	0.887
Gender	Man- Woman	$\mathbf{0 . 8 5 2}$

*For both variables

2b. Multivariable analysis

- Selected variables:
- sbp, dbp, chol, age, gender
- Perform Multiple logistic regression of the selected variables (multivariable) in on go.
- Variable selection is now proceed at multivariable level.
- Some may remain significant, some become insignificant.

2b. Multivariable analysis

- Variable Selection Methods:

- Automatic.
- Forward: Conditional, LR, Wald. Enters variables.
- Backward: Conditional, LR, Wald. Removes variables.
- Manual.
- Enter. Entry \& removal of variables done manually. (Recommended, but leave to experts/statisticians).

2b. Multivariable analysis

- Variable Selection in this workshop:
- Automatic by Forward \& Backward LR.
- Selection of variables by P-values based on LR test.

2b. Multivariable analysis

- Enter all selected variables.
- Perform 2x-1x Forward LR, 1x Backward LR.

[^0]Options: Just leave at the default values.

2b. Multivariable analysis

- Results

Forward LR

- Both methods keep same IVs: dbp \& gender.
- P-values by Wald test.

Backward LR

Variables in the Equation

		B	S.E.	Whald	df	Sig.	Exp(B)	95\% C.I.for EXP(B)		
		Lower						Upper		
$\begin{aligned} & \text { Step } 1^{a} \\ & \text { Step } 2^{b} \end{aligned}$	dbp		. 049	. 015	11.298	1	. 001	1.050	1.021	1.080
	Constant	-5.620	1.277	19.358	1	. 000	. 004			
	dbp	. 050	. 015	11.444	1	. 001	1.051	1.021	1.081	
	gender	. 806	. 391	4.250	1	. 039	2.238	1.040	4.815	
	Constant	-6.120	1.317	21.606	1	000	002			

a. Variable(s) entered on step 1: dbp.
b. Variable(s) entered on step 2: gender

Variables in the Equation

		B	S.E.	Wald	df	Sig.	Exp(B)	95\% C.l.for EXP(B)		
		Lower						Upper		
Step $1^{\text {a }}$. 009	. 014	. 371	1	. 542	1.009	. 981	1.037
	dop	. 034	. 025	1.799	1	. 180	1.034	. 985	1.086	
	chol	. 187	. 188	. 987	1	. 321	1.205	. 834	1.742	
	age	-. 016	. 028	. 335	1	. 563	. 984	. 931	1.040	
	gender	. 755	. 401	3.544	1	. 060	2.127	. 969	4.667	
	Constant	-6.334	1.524	17.272	1	. 000	. 002			
Step $2^{\text {a }}$	sbp	. 006	. 013	. 183	1	. 668	1.006	. 980	1.031	
	dop	. 035	. 025	1.965	1	. 161	1.036	. 986	1.087	
	chol	. 162	. 182	. 796	1	. 372	1.176	. 823	1.681	
	gender	. 728	. 398	3.351	1	. 067	2.070	. 950	4.512	
	Constant	-6.623	1.449	20.882	1	. 000	. 001			
Step $3^{\text {a }}$	dbp	. 043	. 016	7.290	1	. 007	1.044	1.012	1.077	
	chol	. 175	. 180	. 948	1	. 330	1.191	. 838	1.694	
	gender	. 741	. 396	3.495	1	. 062	2.098	. 965	4.564	
	Constant	-6.657	1.452	21.017	1	. 000	. 001			
Step $4^{\text {a }}$	dbp	. 050	. 015	11.444	1	. 001	1.051	1.021	1.081	
	gender	. 806	. 391	4.250	1	. 039	2.238	1.040	4.815	
	Constant	-6.120	1.317	21.606	1	. 000	. 002			

a. Variable(s) entered on step 1: sbp, dbp, chol, age, gender

2b. Multivariable analysis

- Results

Forward LR

- Both methods keep same IVs: dbp \& gender.
- P-values by LR test.

Backward LR

Model if Term Removed

Variable		Model Log Likelihood	Change in -2 Likelihood	df	Sig. of the Change
Step 1	dbp	-95.778	11.933	1	.001
Step 2	dbp	-93.747	12.289	1	.000
	gender	-89.812	4.419	1	.036

Model if Term Removed

Variable		Model Log Likelihood	Change in -2 Log Likelihood	df	Sig. of the Change
Step 1	sbp	-87.054	.370	1	.543
	dbp	-87.799	1.858	1	.173
	chol	-87.363	.988	1	.320
	age	-87.039	.339	1	.560
	gender	-88.698	3.657	1	.056
	Sbp	-87.130	.182	1	.670
	dbp	-88.056	2.034	1	.154
	chol	-87.436	.793	1	.373
	gender	-88.765	3.451	1	.063
	dbp	-90.934	7.609	1	.006
	chol	-87.602	.945	1	.331
	gender	-88.932	3.604	1	.058
	dbp	-93.747	12.289	1	.000
	gender	-89.812	4.419	1	.036

2c. Multicollinearity

- Indicates redundant variables highly correlated IVs.
- Perform Enter method with $\underline{d b p}$ \& gender.
- Look at coefficients (B) \& std errors (SE) / ORs (95\% CIs) if they are suspiciously large.

- Results

	B	S.E.	Whald	df	Sig.	Exp(B)	95\% C.l.for E×P(B)	
							Lower	Upper
Step 1a dbp	. 050	. 015	11.444	1	. 001	1.051	1.021	1.081
gender	. 806	. 391	4.250	1	. 039	2.238	1.040	4.815
Constant	-6.120	1.317	21.606	1	. 000	. 002		

- SEs are quite small relative to Bs.
- 95\% Cls are not too wide.
- No multicollinearity.

2d. Interactions

- IVs combination that requires interpretation of regression separately based on levels of IV \rightarrow making things complicated.
- Perform Enter method with
 dbp, gender \& dbp x gender. Select both dbp \& gender (hold Ctrl on keyboard) \rightarrow Click >áab

2d. Interactions

- Results

Variables in the Equation

		B	S.E.	Wald	df	Sig.	Exp(B)	95\% C.I.for EXP(B)		
		Lower						Upper		
Step 1 ${ }^{\text {a }}$	dbp		. 060	. 028	4.615	1	032	1.062	1.005	1.122
	gender(1)	2.117	2.911	529	1	467	8.308	. 028	2495.947	
	dbp by gender(1)	-. 015	. 033	. 208	1	. 648	. 985	. 924	1.051	
	Constant	-7.070	2.502	7.987	1	005	001			

a. Variable(s) entered on step 1: dbp, gender, dbp * gender

Wald test for dbp by gender (dbp*gender) not sig. Can remove the interaction term from model.

2. Variable selection

- At the end of Variable Selection Step \rightarrow Preliminary

 Final Model.- P-values by Wald test per variable by Enter method.
- Take this adjusted OR.
a. Variable(s) entered on step 1: dbp, gender

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	16.352	2	.000
	Block	16.352	2	.000
	Model	16.352	2	.000

P-values by LR test for both $d b p$ \& gender by Enter method.

Model if Term Removed

Variable		Model Log Likelihood	Change in -2 Log Likelihood	df	Sig. of the Change
Step 1	dbp	-95.778	11.933	1	.001
Step 2	dbp	-93.747	12.289	1	.000
	gender	-89.812	4.419	1	.036

P-values by LR per variable. Obtained with Forward LR method.

3. Model fit assessment

- By these 3 goodness-of-fit assessment methods:
a. Hosmer-Lemeshow test
b. Classification table.
c. Area under Receiver Operating Characteristics (ROC) curve.
- At the end \rightarrow Final Model.

3. Model fit assessment

- Perform Enter method with dbp \& gender.
- Additionally
- Click Options... \rightarrow Tick Hosmer-Lemeshow goodness-of-fit
- Click Save... \rightarrow Tick Probabilities under Predicted Values
- A new variable PRE_1 will be created.

3a. Hosmer-Lemeshow test

- Indicates fit of Preliminary Final Model to data.

- Results

Hosmer and Lemeshow Test

Step	Chi-square	df	Sig.
1	13.626	8	.092

Contingency Table for Hosmer and Lemeshow Test

	$\begin{gathered} \text { cad coronary artery disease } \\ =0 \text { no cad } \end{gathered}$		$\begin{gathered} \text { cad coronary artery disease } \\ =1 \mathrm{cad} \end{gathered}$		
	Observed	Expected	Obsenved	Expected	Total
Step 1	20	20.712	2	1.288	22
2	18	18.369	2	1.631	20
3	22	19.644	0	2.356	22
4	24	20.787	0	3.213	24
5	15	16.019	4	2.981	19
6	16	18.009	6	3.991	22
7	12	14.276	6	3.724	18
8	17	15.260	3	4.740	20
9	11	13.648	9	6.352	20
10	8	6.277	5	6.723	13

$$
P \text {-value } 0.09>0.05 \rightarrow
$$

Good model fit to the data.

Observed counts in data.

- Expected/predicted counts by model.
- The smaller the differences between Observed vs Expected \rightarrow Better model fit to data.

3b. Classiffication table

- CAD \& No CAD subjects observed vs predicted/classified by Preliminary Final Model.
- \% correctly classified > 70\% is expected for good model fit.
- Results

- 80\% of subjects are correctly classified by the model.
- Good model fit to the data.
a. The cut value is .500

3c. Area under ROC curve (AUC)

- A measure of ability of the model to discriminate CAD vs Non CAD subjects.
- AUC >0.7 is acceptable fit.
- AUC ≤ 0.5 no discrimination at all, not acceptable.
- Steps
- Analyze \rightarrow Classify \rightarrow ROC curve... \rightarrow Assign Test Variable: Predicted probability (PRE_1), State Variable: cad, Value of State Variable: 1.
- Under Display tick ROC Curve, With diagonal reference line and Standard Error and confidence interval.

3c. Area under ROC curve (AUC)

- Results

Area Under the Cunve

Test Result Variable(s): PRE_1 Predicted probability

Area	Std. Error ${ }^{\text {a }}$	$\begin{gathered} \text { Asymptotic } \\ \text { Sig. }{ }^{\text {b }} \end{gathered}$	Asymptotic 95% Confidence	
			Lower Bound	Upper Bound
1.732	045	000	643	821

The test result variable(s): PRE_1 Predicted probability has at least one tie between the positive actual state group and the negative actual state group. Statistics may be biased.
a. Under the nonparametric assumption
b. Null hypothesis: true area $=0.5$

- AUC=0.73 > 0.7.
- 95\% CI: 0.64, 0.82.
- Lower limit slightly < 0.7, still acceptable > 0.5 .
- Good model fit to the data.

Diagonal segments are produced by ties

3. Model fit assessment

- All 3 methods indicate good model fit of Preliminary Final Model.
- Can conclude the model with dbp \& gender \rightarrow Final Model.

2. Final Model interpretation \& presentation

- The Final Model.

Variables in the Equation

	B	S.E.	Wald	df	Sig.	Exp(B)	95\% C.l.for E×P(B)	
							Lower	Upper
Step 1a dbp	. 050	. 015	11.444	1	. 001	1.051	1.021	1.081
gender(1)	. 806	. 391	4.250	1	. 039	2.238	1.040	4.815
Constant	-6.120	1.317	21.606	1	. 000	. 002		

- P-values by Wald test per variable by Enter method.
- Take this adjusted OR.
a. Variable(s) entered on step 1: dbp, gender.

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	16.352	2	.000
	Block	16.352	2	.000
	Model	16.352	2	.000

P-values by LR test for both dbp \& gender by Enter method.

Model if Term Removed

Variable	Model Log Likelihood	Change in -2 Log Likelihood	df	Sig. of the Change	
Step 1	dbp	-95.778	11.933	1	.001
Step 2	dbp	-93.747	12.289	1	.000
	gender	-89.812	4.419	1	.036

P-values by LR per variable. Obtained with Forward LR method.

4. Final Model interpretation \& presentation

- Associated factors of coronary artery disease.

Factors		\boldsymbol{b}	Adjusted OR (95\% CI)	\boldsymbol{P}^{2}-value $^{\mathbf{a}}$
Diastolic Blood Pressure		0.05	$1.05(1.02,1.08)$	<0.001
Gender	Man vs Woman	0.81	$2.24(1.04,4.82)$	0.036

a LR test

1 mmHg increase in DBP increase odds of CAD by 1.05 times, while controlling for gender.

Man has 2.24 times odds of CAD as compared to woman, while controlling for DBP.

To obtain for 10 mmHg increase in DBP
$O R=\exp (c \times b)=\exp (10 \times 0.05)=\exp (0.5)=1.65$ times.

Q\&A

[^0]: Probability for Stepwise Entry: 0.05 Removal: 0.10

