Multiple Logistic Regression

Dr. Wan Nor Arifin

Unit of Biostatistics and Research Methodology, Universiti Sains Malaysia.

wnarifin@usm.my / wnarifin.github.io

Wan Nor Arifin. Multiple logistic regression by Wan Nor Arifin is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.

IBM SPSS Statistics Version 22 screenshots are copyrighted to IBM Corp.

Multiple Logistic Regression

Outlines

- Introduction
- Steps in Multiple Logistic Regression
 - 1. Descriptive Statistics
 - 2. Variable Selection
 - 3. Model Fit Assessment
 - 4. Final Model Interpretation & Presentation

- 1.Understand the reasons behind the use of logistic regression.
- 2.Perform multiple logistic regression in SPSS.
- 3.Identify and interpret the relevant SPSS outputs.
- 4. Summarize important results in a table.

- Logistic regression is used when:
 - Dependent Variable, DV: A binary categorical variable [Yes/ No], [Disease/No disease] i.e the outcome.
- Simple logistic regression Univariable:
 - Independent Variable, IV: A categorical/numerical variable.
- Multiple logistic regression Multivariable:
 - IVs: Categorical & numerical variables.
- Recall Multiple Linear Regression?

- Multiple Linear Regression
 - $y = a + b_1 x_1 + b_2 x_2 + \dots + b_n x_n$
- Multiple Logistic Regression
 - $-\log(\text{odds}) = a + b_1 x_1 + b_2 x_2 + \dots + b_n x_n$
 - That's why it is called "logistic" regression.

- Binary outcome: Concerned with Odds Ratio.
 - Odds is a measure of chance like probability.
 - Odds = n(Disease)/n(no Disease) among a group.
 - Odds Ratio, OR = Odds(Factor)/Odds(No factor)
 - Applicable to all observational study designs.
- Relative Risk, RR
 - Only cohort study.
- OR ≈ RR for rare disease, useful to determine risk.

Factor vs CAD	CAD	No CAD
Man	24 [a]	76 [b]
Woman (i.e. not Man)	13 [c]	87 [d]

- Odds(man) = a/b = 24/76 = 0.32
- Odds(woman) = c/d = 13/87 = 0.15
- OR(man/woman) = 0.32/0.15 = 2.13
- Shortcut, OR = ad/bc = (24x87)/(76x13) = 2.11

Factor vs CAD	CAD	No CAD
Man	24 [a]	76 [b]
Woman (i.e. not Man)	13 [c]	87 [d]

- Risk(man) = Proportion CAD = a/(a+b) = 0.24
- Risk(woman) = Proportion CAD c/(c+d) = 0.13
- RR(man/woman) = 0.24/0.13 = 1.85 ≈ OR, 2.11

Steps in Multiple Logistic Regression

- Dataset: *slog.sav*
- Sample size, n=200
- DV: cad (1: Yes, 0: No)
- IVs:
 - Numerical: *sbp* (systolic blood pressure), *dbp* (diastolic blood pressure), *chol* (serum cholesterol in mmol/L), *age* (age in years), *bmi* (Body Mass Index).
 - Categorical: *race* (0: Malay, 1: Chinese, 2: Indian), *gender* (0: Female, 1: Male)

Steps in Multiple Logistic Regression

- **1.Descriptive statistics.**
- 2.Variable selection.
 - a. Univariable analysis.
 - b. Multivariable analysis.
 - c. Multicollinearity.
 - d.Interactions.
- 3.Model fit assessment.

4. Final model interpretation & presentation.

- Set outputs by CAD status.
 - Data → Split File →
 Select Compare groups
 - Set Groups Based on:
 cad, OK

- Obtain mean(SD) and n(%) by CAD group.
 - Analyze → Descriptive
 Statistics → Frequencies
 - Include relevant
 variables in Variables

- Cont...
 - Statistics $\rightarrow \text{tick} \rightarrow$ Continue

Frequencies: Statist	ics + ×
Percentile Values Quartiles Cut points for: 10 equal groups Percentile(s):	Central Tendency Mean Me <u>d</u> ian Mo <u>d</u> e Sum
	📄 Values are group midpoints
Dispersion	Distribution
👿 Std. deviation 👿 Minimum	Ske <u>w</u> ness
📃 <u>V</u> ariance 👿 Ma <u>x</u> imum	🔲 <u>K</u> urtosis
🔲 Ra <u>n</u> ge 📄 S. <u>E</u> . mean	
Continue	Help

- Cont...
 - Charts $\rightarrow \underline{tick} \rightarrow$ Continue \rightarrow OK

• Results

				St	atistics				
cad coron	ary artery dise	ase	sbp Systolic Blood Pressure	dbp Diastolic Blood Pressure	chol serum cholesterol (mmol/l)	age Age in Years	bmi Body Mass Index	race ethnicity	gender gender
0 no cad	Ν	Valid	163	163	163	163	163	163	163
		Missing	0	0	0	0	0	0	0
	Mean		129.29	80.80	6.0970	45.15	36.9086	.94	.47
	Median		124.00	80.00	6.0500	44.00	37.9000	1.00	.00
	Std. Deviatio	n	22.264	12.607	1.16633	8.412	3.77178	.826	.500
	Minimum		88	56	4.00	31	25.30	0	0
	Maximum		218	120	9.35	62	41.20	2	1
	Percentiles	25	114.00	70.00	5.3350	37.00	36.1000	.00	.00
		50	124.00	80.00	6.0500	44.00	37.9000	1.00	.00
		75	140.00	90.00	6.7650	52.00	39.2000	2.00	1.00
1 cad	N	Valid	37	37	37	37	37	37	37
		Missing	0	0	0	0	0	0	0
	Mean		143.76	88.97	6.6459	47.43	36.4464	.97	.65
	Median		138.00	90.00	6.6550	50.00	37.1248	1.00	1.00
	Std. Deviatio	n	25.611	12.171	1.17041	8.796	3.99414	.833	.484
	Minimum		100	70	4.13	33	25.50	0	0
	Maximum		224	114	9.05	61	45.03	2	1
	Percentiles	25	122.00	78.00	5.9537	38.50	34.0802	.00	.00
		50	138.00	90.00	6.6550	50.00	37.1248	1.00	1.00
		75	159.00	97.00	7.2875	55.00	38.8146	2.00	1.00

• Results

cad coronary artery disease		Frequency	Percent	Valid Percent	Cumulative Percent	
0 no cad	Valid	0 malay	60	36.8	36.8	36.8
		1 chinese	52	31.9	31.9	68.7
		2 indian	51	31.3	31.3	100.0
		Total	163	100.0	100.0	
1 cad	Valid	0 malay	13	35.1	35.1	35.1
		1 chinese	12	32.4	32.4	67.6
		2 indian	12	32.4	32.4	100.0
		Total	37	100.0	100.0	

race ethnicity

gender gender

cad coronary artery disease		Frequency	Percent	Valid Percent	Cumulative Percent	
0 no cad	Valid	0 woman	87	53.4	53.4	53.4
		1 man	76	46.6	46.6	100.0
		Total	163	100.0	100.0	
1 cad	Valid	0 woman	13	35.1	35.1	35.1
		1 man	24	64.9	64.9	100.0
		Total	37	100.0	100.0	

Results

- Look at histograms to decide data normality for numerical variables.
 Remember your Basic Stats!
- Caution! Reset back the data.
 - Data → Split File → Select
 Analyze all cases

– **OK**

• Present the results in a table.

Fac	tors	CAD, n=37 mean(SD)	No CAD, n=163 mean(SD)		
Systolic Blo	od Pressure	143.8(25.61)	129.3(22.26)		
Diastolic Blo	ood Pressure	89.0(12.17)	80.8(12.61)		
Cholesterol		6.6(1.17)	6.1(1.17)		
A	ge	47.4(8.80)	45.2(8.41)		
BI	MI	36.4(3.99)	36.9(3.77)		
Race*	Malay Chinese Indian	13(35.1%) 12(32.4%) 12(32.4%)	60(36.8%) 52(31.9%) 51(31.3%)		
Gender*	Male Female	24(64.9%) 13(35.1%)	76(46.6%) 87(53.4%)		

2. Variable selection

- To select best variables to predict the outcome.
- Sub-steps:
 - a. Univariable analysis.
 - b. Multivariable analysis.
 - c. Checking multicollinearity & interactions.

- Perform Simple Logistic Regression on each IV.
- Select IVs which fullfill:
 - *P*-value < $0.25 \rightarrow$ Statistical significance.
 - Clinically significant IVs \rightarrow You decide.

- Analyze <u>numerical</u> variables:
 - Analyze → Regression →
 Binary Logistic
 - Dependent: cad,Covariates: sbp
 - Click Options → Tick
 Iteration history, CI for
 exp(B) → Continue → OK
 - Repeat for *dbp*, *chol*, *age*, *bmi*

Logistic Regres	ssion: Options	+	×
Statistics and Plots			
Classification plots	Correlations of estimates		
🔲 Hosmer-Lemeshow goodness-of-fit	✓ Iteration history		
Casewise listing of residuals	✓ CI for exp(B): 95 %		
Outliers outside 2 std. dev.			
	2		
 Display 			
Carline Carlinger			
Probability for Stepwise	Classification c <u>u</u> toff:	0.5	
E <u>n</u> try: 0.05 Remo <u>v</u> al: 0.10	<u>M</u> aximum Iterations:	20	
Conserve memory for complex analyse	es or large <u>d</u> atasets		
Include constant in model			
	Cancel Help		

a. Variable(s) entered on step 1: sbp.

 In variable selection context, less concern about OR & interpretation.

- Analyze <u>categorical</u> variables:
 - Dependent: cad,
 Covariates: gender
 - Click Categorical →
 Categorical Covariates:
 gender → Change Contrast
 → Reference Category:
 First → Change → Continue.
 - Repeat for race

a. Variable(s) entered on step 1: gender.

Multiple Logistic Regression

• *P*-values of IVs – select *P*-value < 0.25

	Factors	P-value (Wald test)	P-value (LR test)
Systol	lic Blood Pressure	0.001	0.001
Diasto	lic Blood Pressure	0.001	0.001
	Cholesterol	0.012	0.011
	Age	0.143	0.141
	BMI	0.505	0.511
Race	Chinese-vs-Malay Indian-vs-Malay	0.887 0.852	0.981*
Gender	Man- Woman	0.048	0.044

*For both variables

- Selected variables:
 - sbp, dbp, chol, age, gender
- Perform Multiple logistic regression of the selected variables (multivariable) in on go.
- Variable selection is now proceed at multivariable level.
- Some may remain significant, some become insignificant.

- Variable Selection Methods:
 - Automatic.
 - Forward: Conditional, LR, Wald. Enters variables.
 - Backward: Conditional, LR, Wald. Removes variables.
 - Manual.
 - Enter. Entry & removal of variables done manually. (Recommended, but leave to experts/statisticians).

- Variable Selection in this workshop:
 - Automatic by Forward & Backward LR.
 - Selection of variables by *P*-values based on LR test.

• Enter all <u>selected variables</u>.

Probability for Stepwise

Entry: 0.05 Removal: 0.10

• Perform 2x – 1x Forward LR, 1x Backward LR.

Opti	ns : Just leave at the default values.

				Va	riables in	the Equati	ion			
									95% C.I.f	or EXP(B)
	-		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
	Step 1ª	dbp	.049	.015	11.298	1	.001	1.050	1.021	1.080
Doculto		Constant	-5.620	1.277	19.358	1	.000	.004		
Results	Step 2 ^b	dbp	.050	.015	11.444	1	.001	1.051	1.021	1.081
		gender	.806	.391	4.250	1	.039	2.238	1.040	4.815
		Constant	-6.120	1.317	21.606	1	.000	.002		
Forward LR	/ a. Varial b. Varial	ole(s) entere ble(s) entere	d on step 1: d on step 2:	dbp. aender.						
TOTWATULIN				-	riables in 1	the Equati	on			
									95% C.I.f	or EXP(B)
			В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
 Both methods 	Step 1ª	sbp	.009	.014	.371	1	.542	1.009	.981	1.037
Dotti methous		dbp	.034	.025	1.799	1	.180	1.034	.985	1.086
keep same		chol	.187	.188	.987	1	.321	1.205	.834	1.742
•		age	016	.028	.335	1	.563	.984	.931	1.040
IVs: dbp &		gender	.755	.401	3.544	1	.060	2.127	.969	4.667
gender.	Char 23	Constant	-6.334	1.524	17.272	1	.000	.002		
	Step 2ª	sbp dbp	.006	.013	.183	1	.668	1.006	.980	1.031
 <i>P</i>-values by 		chol	.035	.025	1.965	1	.161	1.036	.986	1.087
		gender	.162 .728	.182	.796 3.351	1	.372 .067	1.176 2.070	.823 .950	1.681 4.512
Wald test.		Constant	-6.623	.398 1.449	20.882	1	.007	.001	.900	4.512
	Step 3ª	dbp	-0.023	.016	7.290	1	.000	1.044	1.012	1.077
		chol	.175	.180	.948	1	.330	1.191	.838	1.694
		gender	.741	.396	3.495	1	.062	2.098	.965	4.564
		Constant	-6.657	1.452	21.017	1	.000	.001		
	Step 4ª	dbp	.050	.015	11.444	1	.001	1.051	1.021	1.081
Backward LR		gender	.806	.391	4.250	1	.039	2.238	1.040	4.815
		Constant	-6.120	1.317	21.606	1	.000	.002		

a. Variable(s) entered on step 1: sbp, dbp, chol, age, gender.

Results

- Both methods keep same IVs: *dbp* & *gender*.
- *P*-values by LR test.

Model if Term Removed

Variable		Model Log Likelihood	Change in -2 Log Likelihood	df	Sig. of the Change
Step 1	dbp	-95.778	11.933	1	.001
 Step 2	dbp	-93.747	12.289	1	.000
	gender	-89.812	4.419	1	.036

Model if Term Removed

Variable	1	Model Log Likelihood	Change in -2 Log Likelihood	df	Sig. of the Change
Step 1	sbp	-87.054	.370	1	.543
	dbp	-87.799	1.858	1	.173
	chol	-87.363	.988	1	.320
	age	-87.039	.339	1	.560
	gender	-88.698	3.657	1	.056
Step 2	sbp	-87.130	. 182	1	.670
	dbp	-88.056	2.034	1	. 154
	chol	-87.436	.793	1	.373
	gender	-88.765	3.451	1	.063
Step 3	dbp	-90.934	7.609	1	.006
	chol	-87.602	.945	1	.331
	gender	-88.932	3.604	1	.058
Step 4	dbp	-93.747	12.289	1	.000
	gender	-89.812	4.419	1	.036

Backward LR

2c. Multicollinearity

Results

	Variables in the Equation										
								95% C.I.f	or EXP(B)		
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper		
Step 1ª	dbp	.050	.015	11.444	1	.001	1.051	1.021	1.081		
	gender	.806	.391	4.250	1	.039	2.238	1.040	4.815		
	Constant	-6.120	1.317	21.606	1	.000	.002				

a. Variable(s) entered on step 1: dbp, gender.

- SEs are quite small relative to Bs.
- 95% Cls are not too wide.
- No multicollinearity.

2d. Interactions

- IVs combination that requires interpretation of regression separately based on levels of IV → making things complicated.
- Perform <u>Enter</u> method with <u>dbp, gender & dbp x gender</u>.
 Select both dbp & gender (hold Ctrl on keyboard) → Click ><u>a</u>*b>

2d. Interactions

Results

Variables in the Equation

								95% C.I.	for EXP(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step 1ª	dbp	.060	.028	4.615	1	.032	1.062	1.005	1.122
	gender(1)	2.117	2.911	.529	1	.467	8.308	.028	2495.947
	dbp by gender(1)	015	.033	.208	1	.648	.985	.924	1.051
	Constant	-7.070	2.502	7.987	1	005	.001		

a. Variable(s) entered on step 1: dbp, gender, dbp * gender .

Wald test for dbp by gender (dbp*gender) not sig. Can remove the interaction term from model.

2. Variable selection

• At the end of Variable Selection Step \rightarrow *Preliminary* Final Model.

			Var	iables in t	he Equation	on				• <i>P</i> -values by V test per variat
								95% C.I.f	or EXP(B)	
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper	by Enter meth
Step 1ª	dbp	.050	.015	11.444	1	.001	1.051	1.021	1.081	• Take this adju
	gender(1)	.806	.391	4.250	1	.039	2.238	1.040	4.815	OR.
	Constant	-6.120	1.317	21.606	1	.000	.002			UR.

a. Variable(s) entered on step 1: dbp, gender.

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.	
Step 1	Step	16.352	2	.000	
	Block	16.352	2	.000	ľ
	Model	16.352	2	.000	

Model if Term Removed

Variable		Model Log Likelihood	Change in -2 Log Likelihood	df	Sig. of the Change	
Step 1	dbp	-95.778	11.933	1	.001	
Step 2	dbp	-93.747	12.289	1	.000	
	gender	-89.812	4.419	1	.036	

P-values by LR test for both *dbp* & *gender* by Enter method.

- ble nod.
- isted

P-values by LR per variable. Obtained with Forward LR method.

3. Model fit assessment

By these 3 goodness-of-fit assessment methods:

- a. Hosmer-Lemeshow test
- b. Classification table.
- c. Area under Receiver Operating Characteristics (ROC) curve.
- At the end → *Final Model*.

3. Model fit assessment

- Perform Enter method with *dbp* & *gender*.
- Additionally
 - Click Options... → Tick
 Hosmer-Lemeshow
 goodness-of-fit
 - Click Save... → Tick
 Probabilities under
 Predicted Values
 - A new variable *PRE_1* will be created.

Logistic Regres	ssion: Options	+	×						
Statistics and Plots									
Classification plots	Correlations of estimates								
✓ Hosmer-Lemeshow goodness-of-fit	Iteration history								
Casewise listing of residuals	✓ CI for exp(B): 95 %								
Outliers outside 2 std. dev. All cases									
Display (a) At <u>e</u> ach step (C) At <u>l</u> ast step									
Probability for Stepwise	Classification c <u>u</u> toff:	0.5							
	<u>M</u> aximum Iterations:	20							
Conserve memory for complex analyse	Conserve memory for complex analyses or large <u>d</u> atasets								
📝 Include con <u>s</u> tant in model	✔ Include con <u>s</u> tant in model								
Continue	Cancel Help								

3a. Hosmer-Lemeshow test

• Indicates fit of Preliminary Final Model to data.

Results

Hosmer and Lemeshow Test

Step	Chi-square	df	Sig.
1	13.626	8	.092 /

P-value 0.09 > 0.05 → Good model fit to the data.

Observed counts in data.

Contingency Table for Hosm	er and Lemeshow T
cad coronary artery disease	cad coronary artery

		cad coronary a = 0 n	artery disease o cad	cad coronary a		
		Observed	Expected	Observed	Expected	Total
Step 1	1	20	20.712	2	1.288	22
	2	18	18.369	2	1.631	20
	3	22	19.644	0	2.356	22
	4	24	20.787	0	3.213	24
	5	15	16.019	4	2.981	19
	6	16	18.009	6	3.991	22
	7	12	14.276	6	3.724	18
	8	17	15.260	3	4.740	20
	9	11	13.648	9	6.352	20
	10	8	6.277	5	6.723	13

- Expected/predicted counts by model.
- The smaller the differences
 between Observed vs
 - Expected \rightarrow Better model fit to data.

est

3b. Classification table

- CAD & No CAD subjects observed vs predicted/classified by *Preliminary Final Model*.
- % correctly classified > 70% is expected for good model fit.

Results

		Classification	Table ^a		
				Predicted	
			cad coronary :	artery disease	
	Observed		0 no cad	1 cad	Percentage Correct
Step 1	cad coronary artery	0 no cad	157	6	96.3
disease		1 cad	34	3	8.1
	Overall Percentage				80.0

- 80% of subjects are correctly classified by the model.
- Good model fit to the data.

a. The cut value is .500

3c. Area under ROC curve (AUC)

- A measure of ability of the model to discriminate CAD vs Non CAD subjects.
- AUC > 0.7 is acceptable fit.
- AUC ≤ 0.5 no discrimination at all, not acceptable.
- Steps
 - Analyze → Classify → ROC curve... →
 Assign Test Variable: Predicted
 probability (PRE_1), State Variable: cad,
 Value of State Variable: 1.
 - Under Display tick ROC Curve, With diagonal reference line and Standard Error and confidence interval.

3c. Area under ROC curve (AUC)

Results

Area Under the Curve

Test Result Variable(s):PRE_1 Predicted probability

			Asymptotic 95% Confidence Interval	
Area	Std. Error ^a	Asymptotic Sig. ^b	Lower Bound	Upper Bound
_I .732	.045	.000	.643	.821

The test result variable(s): PRE_1 Predicted probability has at least one tie between the positive actual state group and the negative actual state group. Statistics may be biased.

a. Under the nonparametric assumption

b. Null hypothesis: true area = 0.5

- AUC=0.73 > 0.7.
- 95% CI: 0.64, 0.82.
- Lower limit slightly < 0.7, still acceptable > 0.5.
- Good model fit to the data.

Diagonal segments are produced by ties.

3. Model fit assessment

- All 3 methods indicate good model fit of *Preliminary Final Model*.
- Can conclude the model with dbp & gender → Final Model.

2. Final Model interpretation & presentation

• The Final Model.

Variables in the Equation									
						/		95% C.I.f	or EXP(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step 1ª	dbp	.050	.015	11.444	1	.001	1.051	1.021	1.081
	gender(1)	.806	.391	4.250	1	.039	2.238	1.040	4.815
	Constant	-6.120	1.317	21.606	1	.000	.002		

a. Variable(s) entered on step 1: dbp, gender.

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	16.352	2	.000
	Block	16.352	2	.000
	Model	16.352	2	.000/

Model if Term Removed

Variable	2	Model Log Likelihood	Change in -2 Log Likelihood	df	Sig. of the Change	
Step 1	dbp	-95.778	11.933	1	.001	} ∕
Step 2	dbp	-93.747	12.289	1	.000	Y
	gender	-89.812	4.419	1	.036	

P-values by LR test for both *dbp* & *gender* by Enter method. • *P*-values by Wald test per variable by Enter method.

• Take this adjusted OR.

P-values by LR per variable. Obtained with Forward LR method.

4. Final Model interpretation & presentation

• Associated factors of coronary artery disease.

Increase odds of CAD by 1.05 times, while CAD as compared to woma	Fac	tors	b	Adjusted OR (95% CI)	P-value ^a
^a LR test 1mmHg increase in DBP increase odds of CAD by 1.05 times, while Man has 2.24 times odds of CAD as compared to woma while controlling for DBP	Diastolic Blo	ood Pressure	0.05	1.05 (1.02, 1.08)	< 0.001
1mmHg increase in DBP increase odds of CAD by 1.05 times, while A state of the stat	Gender	Man vs Woman	0.81	2.24 (1.04, 4.82)	0.036
	1mmHg increase increase odds o by 1.05 times, w	of CAD while		CAD as com	pared to woma

 $OR = exp(c \times b) = exp(10 \times 0.05) = exp(0.5) = 1.65$ times.

Multiple Logistic Regression