Simple Logistic Regression

Dr. Wan Nor Arifin

Biostatistics and Research Methodology Unit, Universiti Sains Malaysia

wnarifin@usm.my / wnarifin.github.io

Wan Nor Arifin. Simple logistic regression by Wan Nor Arifin is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.

IBM SPSS Statistics Version 22 screenshots are copyrighted to IBM Corp.

Outlines

- Introduction
- Odds ratio vs relative risk
- Simple logistic regression
- Analysis in SPSS
 - 1. Descriptive Statistics
 - 2. Univariable Analysis
 - 3. Interpretation

- 1.Understand the concepts of odds and risk, and their relations with logistic regression
- 2.Perform simple logistic regression in SPSS
- 3.Identify and interpret the results

Introduction

- Logistic regression is used when:
 - Dependent Variable, DV: A binary categorical variable
 [Yes/No], [Disease/No disease] i.e the outcome.
- Simple logistic regression Univariable:
 - Independent Variable, IV: A categorical/numerical variable.
- Linear Regression?
 - Dependent Variable, DV: ???

Introduction

- Logistic regression is used when:
 - Dependent Variable, DV: A binary categorical variable
 [Yes/No], [Disease/No disease] i.e the outcome.
- Simple logistic regression Univariable:
 - Independent Variable, IV: A categorical/numerical variable.
- Linear Regression?
 - Dependent Variable, DV: Numerical

Introduction

- Simple Linear Regression
 - -y = a + bx
- Simple Logistic Regression
 - $-\log(\text{odds}) = a + bx$
 - That's why it is called "logistic" regression
 - Allows us to obtain *odds ratio*

- Association analysis for cross-tabulation of a binary factor with a binary outcome can be expressed as odds ratio.
- <u>Odds</u> is a measure of chance of disease occurrence in a specified group,

$$Odds = \frac{n_{disease}}{n_{no \, disease}}$$

 <u>Odds ratio</u>, OR is the ratio between the odds of two groups; the group with the risk factor and the group without the risk factor,

$$Odds \, ratio \, , OR = \frac{Odds_{factor}}{Odds_{no \, factor}}$$

 Odds ratio is applicable to all observational study designs (cohort, cross-sectional and case-control) -- does not imply a cause-effect association, but only plain association.

- In epidemiology, the association between a risk factor and a disease is expressed in terms of risk and relative risk.
- <u>Risk</u> is a measure of chance of disease occurrence in a specific group,

$$Risk = \frac{n_{disease}}{n_{group}}$$

• Relative risk is the ration between the risk in the group with the factor and the risk in the group without the risk factor,

Relative risk, RR =
$$\frac{Risk_{factor}}{Risk_{no factor}}$$

 Relative risk is only appropriate to calculate risk and relative risk for cohort studies, because the cause-effect relationship is well defined.

• Odds Ratio, OR

- Applicable to all observational studies.

- Relative Risk, RR
 - Only cohort study.
- OR ≈ RR for rare disease, useful to determine risk from a case-control study.

Factor vs Disease	Lung CA	No Lung CA	
Smoker	24 [a]	76 [b]	
Non-smoker	13 [c]	87 [d]	

- Odds(smoker) = a/b = 24/76 = 0.32
- Odds(non-smoker) = c/d = 13/87 = 0.15
- $OR(Odds_{smoker}/Odds_{non-smoker}) = 0.32/0.15 = 2.13$
- Shortcut, OR = ad/bc = (24x87)/(76x13) = 2.11

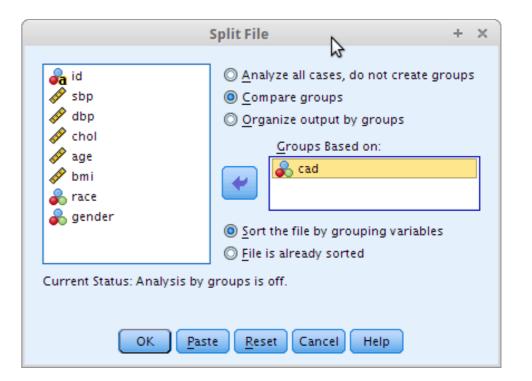
Factor vs Disease	Lung CA	No Lung CA	
Smoker	24 [a]	76 [b]	
Non-smoker	13 [c]	87 [d]	

- Risk(smoker) = Proportion CAD = a/(a+b) = 0.24
- Risk(non-smoker) = Proportion CAD c/(c+d) = 0.13
- RR(Risk_{smoker}/Risk_{non-smoker}) = 0.24/0.13 = 1.85 ≈ OR,
 2.11

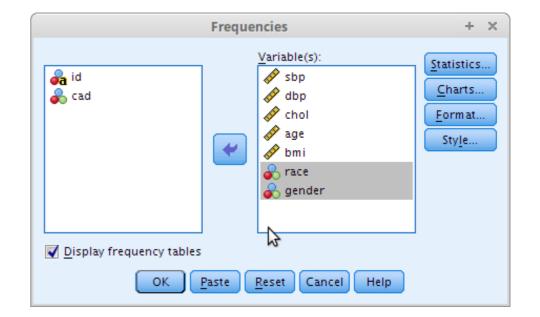
Simple Logistic Regression

- Simple Logistic Regression
 - $-\log(\text{odds}) = a + bx$
 - That's why it is called "logistic" regression
 - Allows us to obtain *odds ratio*
- Odds ratio,

$$OR = exp(b)$$


Analysis in SPSS

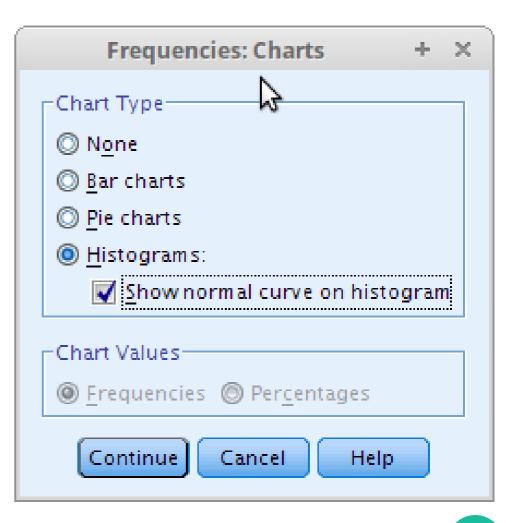
- Dataset: slog.sav
- Sample size, n=200
- DV: *cad* (1: Yes, 0: No)
- IVs:
 - Numerical: *sbp* (systolic blood pressure), *dbp* (diastolic blood pressure), *chol* (serum cholesterol in mmol/L), *age* (age in years), *bmi* (Body Mass Index).
 - Categorical: *race* (0: Malay, 1: Chinese, 2: Indian), *gender* (0: Female, 1: Male)


Steps in Multiple Logistic Regression

- **1.Descriptive statistics**
- 2. Univariable analysis
- **3.Interpretation**

- Set outputs by CAD status.
 - Data → Split File →
 Select Compare groups
 - Set Groups Based on:
 cad, OK

- Obtain mean(SD) and n(%) by CAD group.
 - Analyze → Descriptive
 Statistics →
 Frequencies
 - Include relevant variables in Variables



- Cont...
 - Statistics → tick →
 Continue

Frequencies: Statist	ics + ×
Percentile Values Quartiles Cut points for: 10 equal groups Percentile(s):	Kr Central Tendency Mean Median Mode Sum
	📃 Va <u>l</u> ues are group midpoints
Dispersion	Distribution
👿 Std. deviation 👿 Minimum	Ske <u>w</u> ness
🔄 <u>V</u> ariance 👿 Ma <u>x</u> imum	📃 <u>K</u> urtosis
🔲 Ra <u>n</u> ge 📄 S. <u>E</u> . mean	
Continue	Help

Simple Logistic Regression

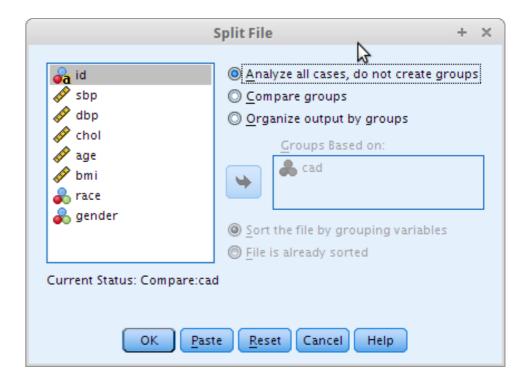
- Cont...
 - Charts $\rightarrow \underline{tick} \rightarrow$ Continue \rightarrow OK

• Results

	Statistics									
cad coron	iary artery dise	ase	sbp Systolic Blood Pressure	dbp Diastolic Blood Pressure	chol serum cholesterol (mmol/l)	age Age in Years	bmi Body Mass Index	race ethnicity	gender gender	
0 no cad	Ν	Valid	163	163	163	163	163	163	163	
		Missing	0	0	0	0	0	0	0	
	Mean		129.29	80.80	6.0970	45.15	36.9086	.94	.47	
	Median		124.00	80.00	6.0500	44.00	37.9000	1.00	.00	
	Std. Deviatio	n	22.264	12.607	1.16633	8.412	3.77178	.826	.500	
	Minimum		88	56	4.00	31	25.30	0	0	
	Maximum		218	120	9.35	62	41.20	2	1	
	Percentiles	25	114.00	70.00	5.3350	37.00	36.1000	.00	.00	
		50	124.00	80.00	6.0500	44.00	37.9000	1.00	.00	
		75	140.00	90.00	6.7650	52.00	39.2000	2.00	1.00	
1 cad	N	Valid	37	37	37	37	37	37	37	
		Missing	0	0	0	0	0	0	0	
	Mean		143.76	88.97	6.6459	47.43	36.4464	.97	.65	
	Median		138.00	90.00	6.6550	50.00	37.1248	1.00	1.00	
	Std. Deviatio	n	25.611	12.171	1.17041	8.796	3.99414	.833	.484	
	Minimum		100	70	4.13	33	25.50	0	0	
	Maximum		224	114	9.05	61	45.03	2	1	
	Percentiles	25	122.00	78.00	5.9537	38.50	34.0802	.00	.00	
		50	138.00	90.00	6.6550	50.00	37.1248	1.00	1.00	
		75	159.00	97.00	7.2875	55.00	38.8146	2.00	1.00	

• Results

cad coronary artery disease		Frequency	Percent	Valid Percent	Cumulative Percent	
0 no cad	Valid	0 malay	60	36.8	36.8	36.8
		1 chinese	52	31.9	31.9	68.7
		2 indian	51	31.3	31.3	100.0
		Total	163	100.0	100.0	
1 cad	Valid	0 malay	13	35.1	35.1	35.1
		1 chinese	12	32.4	32.4	67.6
		2 indian	12	32.4	32.4	100.0
		Total	37	100.0	100.0	


race ethnicity

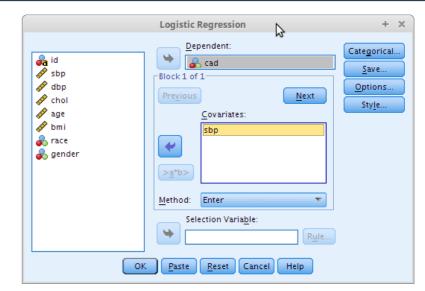
gender gender

cad corona	cad coronary artery disease		Frequency	Percent	Valid Percent	Cumulative Percent
0 no cad	Valid	0 woman	87	53.4	53.4	53.4
		1 man	76	46.6	46.6	100.0
		Total	163	100.0	100.0	
1 cad	Valid	0 woman	13	35.1	35.1	35.1
		1 man	24	64.9	64.9	100.0
		Total	37	100.0	100.0	

Results

- Look at histograms to decide data normality for numerical variables.
 Remember your Basic Stats!
- Caution! Reset back the data.
 - Data → Split File → Select
 Analyze all cases

– **OK**


• Present the results in a table.

Fac	tors	CAD, <i>n</i> = 37 mean(SD)	No CAD, <i>n</i> = 163 mean(SD)
Systolic Blo	od Pressure	143.8(25.61)	129.3(22.26)
Diastolic Blo	ood Pressure	89.0(12.17)	80.8(12.61)
Chole	esterol	6.6(1.17)	6.1(1.17)
A	ge	47.4(8.80)	45.2(8.41)
В	MI	36.4(3.99)	36.9(3.77)
Race*	Malay Chinese Indian	13(35.1%) 12(32.4%) 12(32.4%)	60(36.8%) 52(31.9%) 51(31.3%)
Gender*	Male Female	24(64.9%) 13(35.1%)	76(46.6%) 87(53.4%)

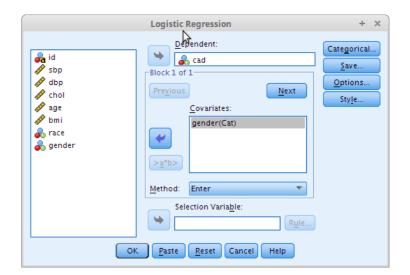
*n (%)

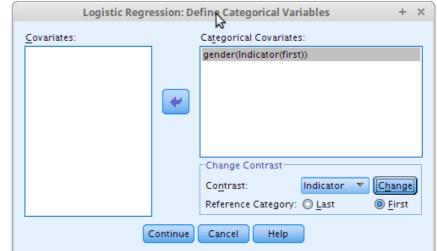
- Perform Simple Logistic Regression on each IV
- Pay attention to whether IV is <u>numerical</u> or <u>categorical</u>

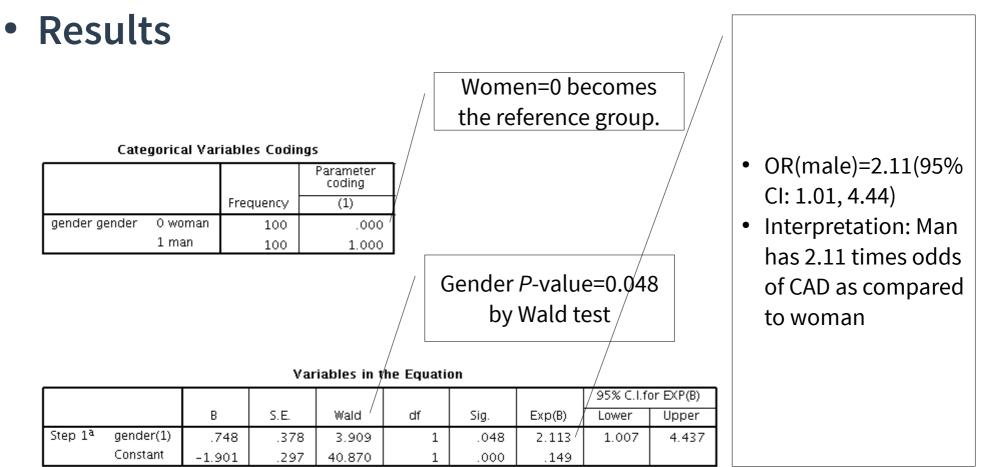
- Analyze <u>numerical</u> variables:
 - Analyze → Regression →
 Binary Logistic
 - Dependent: cad,
 Covariates: sbp
 - Click Options → Tick
 Iteration history, CI for
 exp(B) → Continue → OK
 - Repeat for *dbp*, *chol*, *age*, *bmi*

Logistic Regression: Options +							
Statistics and Plots							
Classification plots	Correlations of estimates						
📗 <u>H</u> osmer-Lemeshow goodness-of-fit	tteration history						
Casewise listing of residuals	✓ CI for exp(B): 95 %						
Outliers outside Z std. dev. All cases Display At <u>each step</u> © At <u>last step</u>	\$						
Probability for Stepwise Entry: 0.05 Remo <u>v</u> al: 0.10	Classification c <u>u</u> toff: <u>M</u> aximum Iterations:	0.5 20					
Conserve memory for complex analyse	es or large <u>d</u> atasets						
✓ Include constant in model							
Continue	Cancel Help						

Results


SBP *P*-value=0.001 by Wald test


	Variables in the Equation								
				/				/95% C.I.f	or EXP(B)
		В	S.E.	Wald /	df	Sig.	Exp(B) /	Lower	Upper
Step 1ª	sbp	.024	.007	10.290	1	.001	1.024	1.009	1.039
	Constant	-4.684	1.039	20.303	1	.000	.009		


- Exp(B) is OR.
- OR(1 unit ↑ in SBP)
 =1.04(95% CI: 1.01,
 1.04)
- Interpretation: 1mmHg increase in SBP increase odds of CAD by 1.02 times

a. Variable(s) entered on step 1: sbp.

- Analyze <u>categorical</u> variables:
 - Dependent: cad,
 Covariates: gender
 - Click Categorical →
 Categorical Covariates: gender → Change
 Contrast → Reference
 Category: First →
 Change → Continue.
 - Repeat for *race*

a. Variable(s) entered on step 1: gender.

• OR values and P-values of IVs

Let's fill in the blanks

	Factors		SE	OR (95% CI)	P-value			
Systolic Blood Pressure		0.02	0.01	1.02 (1.01, 1.04)	0.001			
Diastolic Blood Pressure								
	Cholesterol							
	Age							
	ВМІ							
Race	Chinese-vs-Malay Indian-vs-Malay							
Gender	Man-vs-Woman	0.75	0.38	2.11 (1.01, 4.44)	0.048			

3. Interpretation

• Simple logistic regression of associated factors of coronary artery disease

Fac	b	SE	OR (95% CI)	P-value		
Systolic Blo	ood Pressure	0.02	0.01	1.02 (1.01, 1.04)	0.001	
Gender	Man vs Woman	0.75	0.38	2.11 (1.01, 4.44)	0.048	
1mmHg increase increase odds o by 1.02 times, y controlling for g	of CAD while		Man has 2.11 time CAD as compared while controlling	to woman,		
To obtain for 10mmHg increase in SBP OR = $exp(c \times b) = exp(10 \times 0.05) = exp(0.5) = 1.22$ times						

Simple Logistic Regression