Internal structure evidence of validity

Dr Wan Nor Arifin

Unit of Biostatistics and Research Methodology, Universiti Sains Malaysia. wnarifin@usm.my / wnarifin.github.io

Wan Nor Arifin, 2019. Internal structure evidence of validity by Wan Nor Arifin is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.

Outlines

- 1. Measurement validity & reliability
- 2. Classical validity
- 3. The validity
- 4. Factor analysis
- 5. Reliability

1. Measurement validity & Reliability

- Measurement → Process of observing & recording.
- Measurement validity → Accuracy.
- Measurement reliability → Precision, consistency, repeatability.

2. Classical validity

- 3Cs:
 - 1.Content
 - 2.<u>Criterion</u>
 - 3.<u>C</u>onstruct

3. The validity

- Unitary concept.
- Degree of evidence → Purpose & Intended use of a tool.
- Evidence from 5 sources:
 - 1.Content.
 - 2. Internal structure.
 - 3. Relations to other variables
 - 4. Response process.
 - 5. Consequences.

The validity

- Construct Concept to be measured by a tool.
- Construct = Concept = Domain = Idea
- Internal structure evidence
 - How <u>relationship</u> between items & components reflect <u>construct</u>.
 - Analyses:
 - 1. Factor analysis
 - 2. Reliability

4. Factor Analysis

- Factoring
- Factor analysis

Factoring

- Group things that have common concept.
- Simplify.
- Factoring = Grouping.
- Factor = Construct = Concept.

Orange, motorcycle, bus, durian, banana, car

Anything in common?

Group them

Orange, durian, banana

Motorcycle, bus, car

into two groups

Name the groups

Fruit	Motor vehicle		
Orange Durian	Motorcycle Bus		
Banana	Car		

factor out the common concept.

Likert-type options [Fruit] 1-2-3-4-5 [Motor Vehicle]

Items	1	2	3	4	5	6	
1. Orange	1.00						
2. Durian	.67	1.00		Correlation matrix			
3. Banana	.70	.81	1.00				
4. Motorcycle	.11	.08	.05	1.00			
5. Bus	.08	.12	.09	.75	1.00		
6. Car	.18	.12	.22	.89	.83	1.00	

Factors

Items	Fruit	Motor vehicle
1. Orange	X	-
2. Durian	X	_
3. Banana	X	-
4. Motorcycle	-	X
5. Bus	-	X
6. Car	-	X

<u>Correlated</u> items \rightarrow <u>Group</u>.

More items? Impossible.

 $FA \rightarrow$ objective factoring.

FA

- Multivariate analysis –>1 outcomes/DVs/Items.
- Numerical items, e.g. Likert scale, VAS scores, laboratory results etc.
- Group correlated items \rightarrow Factor.
- Factors <u>extracted</u> from items → Latent (unobserved) IVs.
- RQs:
 - Number of factors?
 - Strength of Item-Factor correlation (factor loading)?
- Recall MLR: 1 DV many IVs (observed).

Classification

- 1. Exploratory FA/EFA
- 2. Confirmatory FA/CFA

- Exploratory analysis.
- Objectives: Explore & factor items, generate theory.
- Models:
 - -Full component model.
 - -Common factor model.

Full component model

- Extraction method: Principal component analysis (PCA)
- Data reduction \rightarrow For other analysis.
- Compress many variables → Smaller number of components.
- Sum of all variable variances = Sum of component variances.
- Measurement errors NOT considered.
- NOT the real FA!

Common factor model

- Extraction methods:
 - Classical: Principal axis analysis.
 - Other variants: Image analysis, alpha analysis, maximum likelihood (ML).
- Common variances + Error variances.
- The 'Real' FA.
- Main results:
 - Number of factors extracted.
 - Factor loadings.
 - Factor-factor correlations.

- To simplify EFA results → Factor <u>Rotation</u>:
 - Types:
 - Orthogonal method uncorrelated factors.
 - -Varimax, Quartimax, Equamax
 - **Oblique method** correlated factors.
 - -*Oblimin*, Promax
- Obtain clear factors and factor loadings.

Classification

- 1. Exploratory FA/EFA
- 2. Confirmatory FA/CFA

CFA

- Confirmatory analysis.
- Also common factor model.
- Structural Equation Modeling (SEM) analysis:
 - Measurement model (CFA)
 - Structural model (path analysis)
- Commonly ML estimation.
- Model fit assessment.

CFA

• For example, factor explaining between these items:

I love fast food

I hate vegetable

I hate eating fruits

I hate exercise

Strong theoretical basis from EFA, theory, LR.

CFA

I love cat

I hate snake

I love traveling

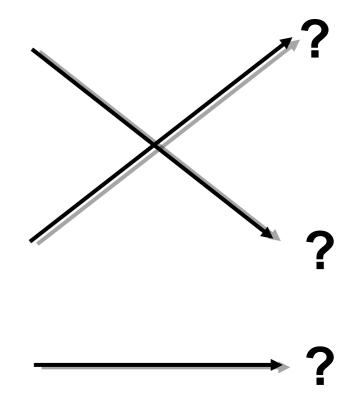
I love snorkeling

I support ABC football team

I love driving car

I love computer game

I like to have everything in symmetry


I love Twitter

My favorite food is nasi ayam

I enjoy eating pisang goreng

I spend most of my time in front of computer

I love Facebook

Factors? No idea \rightarrow EFA

EFA vs CFA

EFA

CFA

Exploratory

Confirmatory

No need theory

Theory

Explore to get theory

Confirm theory

Item not fixed to factor

Item fixed to factor

Rotation

No rotation

No Hx testing

Hx testing & model fit

5. Reliability

- Part of validity evidence.
- Types:
 - 1. Test-retest reliability
 - 2.Parallel-forms reliability
 - 3.Interrater reliability
 - 4. Internal consistency reliability

Internal consistency reliability

- Consistent responses in a construct.
- Homogenous $\rightarrow \uparrow$ Reliability.
- Heterogenous $\rightarrow \downarrow$ Reliability.
- Advantage: Measure 1x only.
- EFA: Cronbach's alpha coefficient.
- CFA: Raykov's rho
- Not reliable $0 \rightarrow 1$ Perfectly reliable.
- Aim > 0.7.

References

Brown, T. A. (2015). Confirmatory factor analysis for applied research. New York: The Guilford Press.

Gorsuch, R. L. (2014). Exploratory factor analysis. New York: Routledge.

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010).

Multivariate data analysis. New Jersey: Prentice Hall.

Stevens, J. P. (2009). Applied multivariate statistics for the social sciences (5th eds.). New York: Taylor & Francis Group.

Tabachnick, B., & Fidell, L. (2007). Using multivariate statistics (5th ed.). USA: Pearson.

Schreiber, J. B., Nora, A., Stage, F. K., Barlow, E. A., & King, J. (2006). Reporting structural equation modeling and confirmatory factor analysis results: A review. The Journal of Educational Research, 99(6), 323–338.