Bibliography

Aria, M. (2020). pubmedR: Gathering metadata about publications, grants, clinical trials from PubMed database. Retrieved from https://github.com/massimoaria/pubmedR
Aria, M., & Cuccurullo, C. (2017). Bibliometrix: An r-tool for comprehensive science mapping analysis. Journal of Informetrics. https://doi.org/10.1016/j.joi.2017.08.007
Aria, M., & Cuccurullo, C. (2024). Bibliometrix: Comprehensive science mapping analysis. Retrieved from https://www.bibliometrix.org
Caballar, R. (2024). What are small language models? Website. Retrieved from https://www.ibm.com/think/topics/small-language-models
Gruber, J. B., & Weber, M. (2024). Rollama: Communicate with ollama to run large language models locally. Retrieved from https://jbgruber.github.io/rollama/
Hillier, D., Guertler, L., Tan, C., Agrawal, P., Ruirui, C., & Cheng, B. (2024). Super tiny language models. Retrieved from https://arxiv.org/abs/2405.14159
IBM. (2024). What are large language models (LLMs)? Website. Retrieved from https://www.ibm.com/think/topics/large-language-models
Lin, H., & Safi, T. (2024a). Ollamar: An r package for running large language models. PsyArXiv. https://doi.org/10.31234/osf.io/zsrg5
Lin, H., & Safi, T. (2024b). Ollamar: Ollama language models. Retrieved from https://hauselin.github.io/ollama-r/
Müller, K., & Wickham, H. (2023). Tibble: Simple data frames. Retrieved from https://tibble.tidyverse.org/
R Core Team. (2024). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/
Ruiz, E. (2024). Mall: Run multiple large language model predictions against a table, or vectors. Retrieved from https://mlverse.github.io/mall/
Tang, Y., Liu, F., Ni, Y., Tian, Y., Bai, Z., Hu, Y.-Q., … Wang, Y. (2024). Rethinking optimization and architecture for tiny language models. Retrieved from https://arxiv.org/abs/2402.02791
"Unleashing the Power of Local LLMs". (2024). Unleashing the power of local LLMs: A comprehensive guide. Website. Retrieved from https://localxpose.io/blog/unleashing-the-power-of-local-llms
Urbanek, S. (2015). base64enc: Tools for base64 encoding. Retrieved from http://www.rforge.net/base64enc
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., … Polosukhin, I. (2017). Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Eds.), Advances in neural information processing systems (Vol. 30). Curran Associates, Inc. Retrieved from https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
Wickham, H. (2023). Stringr: Simple, consistent wrappers for common string operations. Retrieved from https://stringr.tidyverse.org
Wickham, H., & Cheng, J. (2025). Ellmer: Chat with large language models. Retrieved from https://ellmer.tidyverse.org
Xie, Y. (2014). Knitr: A comprehensive tool for reproducible research in R. In V. Stodden, F. Leisch, & R. D. Peng (Eds.), Implementing reproducible computational research. Chapman; Hall/CRC.
Xie, Y. (2015). Dynamic documents with R and knitr (2nd ed.). Boca Raton, Florida: Chapman; Hall/CRC. Retrieved from https://yihui.org/knitr/
Xie, Y. (2024). Knitr: A general-purpose package for dynamic report generation in r. Retrieved from https://yihui.org/knitr/
Yang, A., Yang, B., Hui, B., Zheng, B., Yu, B., Zhou, C., … Fan, Z. (2024). Qwen2 technical report. arXiv Preprint arXiv:2407.10671.
Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu, B., … Qiu, Z. (2024). Qwen2.5 technical report. arXiv Preprint arXiv:2412.15115.
Zhu, H. (2024). kableExtra: Construct complex table with kable and pipe syntax. Retrieved from http://haozhu233.github.io/kableExtra/